首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a comprehensive design protocol for a W‐band E‐plane waveguide‐to‐microstrip transition covering all aspects, from the probe design, matching, cut‐off cavity size estimations, verification analysis with different 3D EM simulators, and the entire fabrication process, with special emphasis on tolerances and yield with optimized costs. In fact, a complete study of the manufacture yield is done without the need to fabricate a large number of units of the microstrip‐to‐waveguide transition by taking advantage of the Monte Carlo tools embedded in 3D EM simulators. A simple equivalent circuit model of the transition is proposed and validated to be used in W‐band system level simulations. These are requirements to enable massive use of W‐band products (i.e., concealed weapons detection, imaging, etc.) with reasonable costs. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:77–91, 2014.  相似文献   

2.
A 6–18 GHz wideband cavity‐backed log‐periodic‐slot end‐fire antenna with vertical polarization for conformal application is presented. The log‐periodic folded slots and parasitic slots with 10 slot elements are applied to cover 6–18 GHz frequency band and the log‐periodic metallic cavity is placed under each slot element to keep wideband performance and prevent the effects of large metallic carrier on radiation patterns. The ground plane etched with log‐periodic slots is reversed and touched directly to the backed cavity and a dielectric cover is added to the antenna, to further improve the antenna performance. Meanwhile, a broadband microstrip‐coplanar waveguide transition is inserted in the antenna for measurements. With these designs, the proposed antenna shows good impedance matching (|S11|<27 dB) and end‐fire gain (>4 dBi) performances in 6–18 GHz. The proposed antenna also keeps low‐profile and easy flush‐mounted characteristic which is suitable for conformal applications of high speed moving carriers.  相似文献   

3.
In this work, a resistor standard is introduced into our previously proposed numerical thru‐reflect‐line (TRL) calibration procedure in order to determine the characteristic impedance of the line standard of calibration on the basis of a deterministic method of moments (MoM) algorithm. A comprehensive analytical derivation is presented with regards to electrical properties of such a resistor standard in comparison to other standards. In addition, an error analysis is detailed, which reveals correlations of characteristic parameters in connection with equivalent circuit model development from the conversions from field‐based S‐parameters to circuit‐based Y‐ or Z‐parameters. Interesting properties and criteria are derived, allowing accurate parameter extractions. To validate the proposed numerical TRL calibration procedure with this new resistor standard concept and the developed error analysis, the characteristic impedance of a microstrip line is extracted from a commercial software. In addition, a further example with microstrip discontinuity is shown and the effectiveness of the proposed technique is verified. © 2006 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2006.  相似文献   

4.
The effect of finite‐size recessed ground on characteristic features of a microstrip transmission line is investigated and verified experimentally on alumina substrate of height 0.127 mm with εr = 9.8 at 60 GHz. A measured characteristic impedance of 238 Ω, effective dielectric constant of 3.09, and attenuation constant of 3.4 Np/m is achieved by using a recessed ground of dimensions (width × depth) 4.5 mm × 0.95 mm, below a 50‐Ω (on conventional ground plane) microstrip line. The effect of recessed ground on lumped equivalent circuit elements of microstrip line discontinuities including series‐gap, open‐end, and step discontinuities is also studied. To show the usefulness of recessed ground microstrip line, a prototype of fifth‐order Chebyshev‐type recessed ground end‐coupled band‐pass filter is designed and fabricated at 60 GHz. The filter exhibits measured insertion loss lower than 2.2 dB and return loss better than 13 dB over 3‐dB passband of 6% centered at 60 GHz. The measured results show good consistency with simulated results and confirm the usefulness of recessed ground plane microstrip line.  相似文献   

5.
To mitigate the interference with coexisting wireless systems operating over 3.3–3.6 GHz, 5.15–5.825 GHz, and 7.725–8.5 GHz bands, a novel triple band notched coplanar waveguide fed pitcher‐shaped planar monopole antenna is presented for ultrawideband applications. Bands notched characteristics are achieved using a novel mushroom type electromagnetic band gap structure like resonator and a split ring slot. A conceptual equivalent RLC (Resistor‐Inductor‐Capacitor)‐resonant circuit is presented for the band notched characteristics . Furthermore, the input impedance and VSWR (voltage standing wave ratio) obtained from the equivalent circuit are validated with simulated and measured results. Performances of the antennas in both, the frequency domain and the time domain are investigated. The simulated and measured results demonstrate that the proposed antennas have wide impedance bandwidth, nearly stable radiation patterns, and suppression of gain and total radiation efficiency at notched bands. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:795–806, 2015.  相似文献   

6.
A flower‐shaped ultra‐wideband fractal antenna is presented. It comprises a fourth iterative flower‐shaped radiator, asymmetrical stub‐loaded feeding line, and coplanar quarter elliptical ground planes. A wide operating band of 12.12 GHz (4.58‐16.7 GHz) for S 11 ≤ ? 10 dB is achieved along with an overall antenna footprint of 15.7 × 11.4 mm2. In addition, other desirable characteristics, that is, omnidirectional radiation patterns, peak gain upto 5 dB, and fidelity factor more than 75% are achieved. A good agreement exists between the simulation and measured results. The obtained results illustrate that this antenna has wide operating range and compact dimensions than available structures.  相似文献   

7.
A wideband balanced microstrip‐to‐microstrip vertical transition is proposed. This vertical transition is based on the back‐to‐back hexagonal microstrip lines with a slot on the common ground. The etched slot is used to achieve the vertical transmission of differential‐mode signal and the suppression of common‐mode (CM) signal. The back‐to‐back hexagonal microstrip lines enable the transition to obtain wide bandwidth. One prototype shows the fractional bandwidth (|Sdd11| ≤ ?15 dB) of 63%, the minimum (maximum) insertion loss of 0.7 dB (1.9 dB), and the minimum CM suppression inside passband of 27 dB.  相似文献   

8.
A novel technique is presented for the automatic, self‐consistent and direct determination of wide‐band lumped‐element equivalent circuit models of substrate integrated waveguide discontinuities. This technique is based on the full‐wave analysis of substrate integrated waveguide components by using the Boundary Integral‐Resonant Mode Expansion method, which provides a generalized admittance matrix of the components in the form of a pole expansion in the frequency domain. This expression of the admittance matrix permits to directly identify the topology of a multimodal equivalent circuit and the values of its lumped elements, thus avoiding any initial guess or fitting procedure. The basic theory of the full‐wave analysis method and the procedure for determining the equivalent circuit model are reported. The features of the proposed technique are detailed through the modeling of an iris‐like discontinuity. Moreover, this technique is validated by modeling substrate integrated waveguide filters, whose frequency response is compared with numerical and experimental results. The proposed method can be adopted to obtain libraries of parametric models of substrate integrated waveguide discontinuities, which can be included in computer aided design tools. The multimodal parametric model of an iris‐like discontinuity is presented and discussed. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

9.
This work focusing on the dual‐band antenna design with rectifying circuit for energy transfer system technology for enhancement gain performance. The air gap technique is applied on this microstrip antenna design work to enhance the antenna gain. The work begins with designing and analyzing the antenna via the CST Microwave Studio software. After validation on acceptable performance in simulation side is obtained, the return loss, S11 of the antenna is measured using vector network analyzer equipment. The rectifier circuit is used to convert the captured signal to DC voltage. This projected dual‐band antenna has successfully accomplished the target on return loss of ?44.707 dB and ?32.163 dB at dual resonant frequencies for 1.8 GHz and 2.4 GHz, respectively. This proposed antenna design benefits in low cost fabrication and has achieved high gain of 6.31 dBi and 7.82 dBi for dual‐band functioning frequencies.  相似文献   

10.
We present results of a recent investigation into a wide‐band and high gain patch microstrip antenna using the finite‐difference time‐domain (FDTD) method. The substrate–superstrate resonance technique was used to increase the antenna element gain. An aperture‐coupled rectangular patch microstrip antenna with two superstrate layers was designed, and the effect of the finite ground plane on the gain of the antenna element was analyzed. The antenna was fabricated and tested. The measured results are presented in comparison with the simulated ones. ©1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE 9: 468–473, 1999  相似文献   

11.
An equivalent circuit model for the wide‐band band‐pass filters (BPFs) using modified Minkowski‐island‐based (MIB) fractal patch are proposed in this article. The BPF is mainly formed by a square patch resonator in which a modified MIB fractal configuration with second‐order iteration is embedded in the patch. By the equivalent circuit model with diamond structure, the wide‐band responses are analyzed. The design procedure included equivalent circuit model is available for wide‐band design. For wide‐band characteristics, at 5.0 GHz central frequency, it has good measured characteristics including the wider bandwidth of 3.14–6.89 GHz (3‐dB fractional bandwidth of 75%), low insertion loss of 0.39 dB, and high rejection level (?48.5/?44.9 dB). The patch size is 7.4 λ 7.4 mm2 (0.25 λg × 0.25 λg) with 14.1% reduction. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:170–176, 2014.  相似文献   

12.
A millimeter‐wave ultrawideband two‐way switch filter module is presented in this article. The switch filter module covers whole Ka‐band (26–40 GHz), and is composed of two wideband band‐pass filters and two monolithic microwave integrated circuit (MMIC) single pole two throw (SP2T) switches. One filter is realized using E‐plane iris waveguide band‐pass filter, and another is realized by a novel 11‐pole three‐line microstrip structure band‐pass filter. Compared with the traditional three‐line filter, the proposed three‐line filter not only retains virtues of the traditional three‐line filter, but also resolves drawbacks of it, which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 51 × 26 × 9.8 mm3, and interconnections between MMICs and microstrip are established by bond wires. The fabricated switch filter module exhibits excellent performances: for two different states, the measured insertion loss and return loss are all better than 7 and 10 dB in each pass‐band, respectively. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:305–310, 2015.  相似文献   

13.
A three‐dimensional (3D) finite‐difference time‐domain (FDTD) simulator is developed for the investigation of network (S‐) parameters of rectangular cross‐section waveguide filters. The simulator is calibrated against analytical LC equivalent models. Any number of horizontal or vertical windows can be located to act as capacitive or inductive irises, respectively, and two‐port filter characteristics can be obtained automatically. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

14.
This work explains the design and analysis of a triple‐band electrically small (ka = 0.56 < 1) zeroth‐order resonating (ZOR) antenna with wideband circular polarization (CP) characteristics. The antenna compactness is obtained due to ZOR frequency of composite right/left‐handed (CRLH) transmission line (TL) and wideband CP radiation are achieved due to the introduction of single‐split ring resonator and asymmetric coplanar waveguide fed ground plane. The proposed antenna obtains an overall electrical size including the ground plane of 0.124 λ0 × 0.131 λ0 × 0.005 λ0 at 1.58 GHz and physical dimension of 23.7 × 25 × 1 mm3 are achieved. The antenna provides a size reduction of 44.95% compared to a conventional monopole antenna. The novelty behind the ohm‐shaped capacitor is the generation of extra miniaturization with better antenna compactness. The antenna provides dual‐polarized radiation pattern with linear polarization radiation at 1.58 and 3.54 GHz, wideband CP radiation at 5.8 GHz. The antenna measured results shows good impedance bandwidth of 5%, 6.21%, and 57.5% for the three bands centered at 1.58, 3.54, and 5.8 GHz with a wider axial ratio bandwidth (ARBW) of 25.47% is obtained in the third band. The antenna provides a higher level of compactness, wider ARBW, good radiation efficiency, and wider S11 bandwidth. Hence, the proposed antenna is suitable for use in GPS L1 band (1.565‐1.585 GHz), WiMAX 3.5 GHz (3.4‐3.8 GHz) GHz, WLAN 5.2/5.8 GHz (5.15‐5.825 GHz), and C‐band (4‐8 GHz) wireless application systems.  相似文献   

15.
In this article, a new CAD model for the coplanar waveguide (CPW) cross‐over air‐bridge is proposed. The model takes into account the CPW open‐end capacitance and the vertical strips of the bridge. The section directly underneath the bridge is modeled as a small section of a microstrip line. Our results are in good agreement with the published full‐wave results. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2005.  相似文献   

16.
In this paper, one‐dimensional modal perfectly matched layer (PML) is applied to improve the computational efficiency in waveguide discontinuity problems. The proposed PML formulation is based on an anisotropic medium. A WG‐90 rectangular waveguide with a thick asymmetric iris is analyzed via FDTD simulations with Berenger's PML and the proposed one. Numerical results show that the computational efficiency is significantly improved by the new method. © 2000 John Wiley & Sons, Inc. Int J RF and Microwave CAE 10: 264–270, 2000  相似文献   

17.
In this article, a broadband microstrip‐to‐waveguide transition with antisymmetric tapered probe as well as a W‐band power divider/combiner using dual proposed antisymmetric tapered probes is presented. Because of tapered microstrip shapes and metallic steps, the proposed transition is proved to be broadband, efficient, and compact. The insertion loss of the transition sample is less than 0.56 dB between 75 GHz and 100 GHz. Under the assistance of the gradually changed waveguide and dual parallel tapered probes, the operating band of the power divider/combiner has been significantly improved, which is adequate to work in the whole W‐band. A back‐to‐back prototype of the divider/combiner is fabricated and measured. The measured insertion loss of the single divider/combiner is less than 0.29 dB between 90 GHz and 100 GHz, and agrees well with the simulations. Because the circuit size is smaller than 8.0 mm × 2.2 mm (Thanks to the excellent performance and compact size), the proposed design can find wide applications in miniaturized MCM/MMIC systems.  相似文献   

18.
This article presents a novel multi‐mode microstrip resonator. Using the even‐odd‐mode method, its resonance characteristics are analyzed and the design graphs are given. Each mode equivalent circuit is a λ/4 stepped impedance resonator (SIR), so the proposed resonator has a compact size and the higher harmonics can be tuned in a wide range. Stub–stub coupling is introduced to split two identical modes and produce two transmission zeros (TZs). Then a tri‐band filter operating at 1.5, 2.4, and 3.8 GHz is designed using the proposed resonator. The three center frequencies and bandwidths can be independently controlled. By tuning the impedance and length ratios of the stubs, wide upper stopband is achieved. Finally, the designed filter is fabricated and measured, and the measured results agree well with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:559–564, 2016.  相似文献   

19.
In this work, a systematic computer‐aided design technique is proposed to minimize the fabrication iteration for the design and development of W‐band subharmonic Gunn diode oscillator with wideband tunable bandwidth at W‐band. Gunn diode based single diode oscillator structure was divided into passive and active parts to facilitate the modeling of the component on appropriate simulation environment. Resonating structure and package of Gunn diode are modeled as passive circuit in high frequency structure simulator (HFSS). To satisfy the oscillator design equation, disc‐post resonating structure is tuned in HFSS and its S‐parameters are collaborated with the model of Gunn diode in advanced design system. Magnitude and phase of reflection coefficient (S11) is observed to ascertain the desired frequency of oscillation. Proper tuning of disc‐post structure is done on simulation platform, which reduces the fabrication complexity and cost as well. The measurement results validate the models designed using EM and circuit simulator. The measured maximum stable RF power without any fabrication iteration is 14.2 dBm. A tunable bandwidth of 4 GHz with power output ripple of ±1 dB is measured by using a movable backshort.  相似文献   

20.
In this article, a new modified cross‐shaped coupled cubical dielectric resonator antenna (DRA) has been investigated for dual‐band dual‐polarized applications. The linearly polarized (LP) fields in DRA has been generated by using a single slot in the ground plane and kept at either 45° (SL1) or ?45° (SL2) from the microstrip feed line. Combining these two slots (SL1 and SL2) in the modified ground plane, the proposed structure able to generate circularly polarized (CP) field in DRA. But the generated CP field is not enough to cover ISM 2400 band. To achieve CP in ISM 2400 band, an extra slot (SL3) to the existing slots and an extra strip (ST) in the circular ring feed line have been included. This modified final antenna arrangement has been able to produce LP (due to loading effect, ie, slot and DRA) and CP fields (orthogonal modes have been generated, ie, TE x111 and TE y111), simultaneously. The measured CP and LP, ?10 dB impedance bandwidths are 11.85% (2.38‐2.68 GHz) and 9.11% (3.25‐3.56 GHz) in combination with the 3‐dB axial ratio bandwidth of 4.11% (2.38‐2.48 GHz). The generated CP and LP fields are used for different wireless communication bands such as ISM 2400 and Wi‐MAX (3.3‐3.7 GHz) bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号