首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyl terephthalate (DMT) and ethylene glycol (EG) were used for the preparation of poly(ethylene terephthalate) (PET), and poly(ethylene glycol) (PEG) was added as a soft segment to prepare a PET–PEG copolymer with a shape‐memory function. MWs of the PEG used were 200, 400, 600, and 1000 g/mol, and various molar ratios of EG and PEG were tried. Their tensile and shape‐memory properties were compared at various points. The glass‐transition and melting temperatures of PET–PEG copolymers decreased with increasing PEG molecular weight and content. A tensile test showed that the most ideal mechanical properties were obtained when the molar ratio of EG and PEG was set to 80:20 with 200 g/mol of PEG. The shape memory of the copolymer with maleic anhydride (MAH) as a crosslinking agent was also tested in terms of shape retention and shape recovery rate. The amount of MAH added was between 0.5 and 2.5 mol % with respect to DMT, and tensile properties and shape retention and recovery rate generally improved with increasing MAH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 27–37, 2002  相似文献   

2.
The mechanical and heat‐resistant properties of acrylonitrile–butadiene–styrene (ABS) binary and ternary blends were investigated. The relationship of compatibility and properties was discussed. The results show that poly(methyl methacrylate) (PMMA) and styrene–maleic anhydride (SMA) can improve the thermal properties of conventional ABS. The Izod impact property of ABS/PMMA blends increases significantly with the addition of PMMA, whereas that of ABS/SMA blends decreases significantly with the addition of SMA. Blends mixed with high‐viscosity PMMA are characterized by higher heat‐distortion temperature (HDT), and their heat resistance is similar to that of blends mixed with SMA. For high‐viscosity PMMA, from 10 to 20%, it is clear that blends appear at the brittle–ductile transition, which is related to the compatibility of the two phases. TEM micrographs show low‐content and high‐viscosity PMMA in large, abnormally shaped forms in the matrix. Compatibility between PMMA and ABS is dependent on both the amount and the viscosity of PMMA. When the amount of high‐viscosity PMMA varied from 10 to 20 wt %, the morphology of the ABS binary blends varied from poor to satisfactory compatibility. As the viscosity of PMMA decreases, the critical amount of PMMA needed for the compatibility of the two phases also decreases. SMA, as a compatibilizer, improved the interfacial adhesiveness of ABS and PMMA, which results in PMMA having good dispersion in the matrix. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2652–2660, 2002  相似文献   

3.
IR and UV-absorption spectra, and the thermally stimulated currents of pure and Rhodamine-6G-doped poly(acrylonitrile–butadiene–styrene) (Rhdoped ABS) films were investigated. Structural characteristics could be specified from these techniques. Both IR and UV-absorption studies revealed a modification of the structure of ABS on blending with Rhodamine 6G: Rh molecules are partially dispersed in the ABS matrix and partially attached as side groups to the ABS backbone. Thermally stimulated depolarization current (TSDC) studies confirmed this result. The results revealed that incorporation of Rh 6G in ABS locks the dipole in the ABS matrix after electric poling. The TSDC spectra have been found, depending on the polarization temperature, to be characterized by three peaks. The phenomenon of the existence of these current maxima is discussed and analysed in terms of dipolar and ionic relaxations.  相似文献   

4.
Grafting of maleic anhydride (MA) onto styrene–butadiene–styrene triblock copolymer (SBS) was carried out by free radical polymerization using supercritical carbon dioxide (SC CO2) as a solvent of MA and swelling agent of SBS. The effect of various factors such as monomer concentration, initiator concentration, SC CO2 pressure, and reaction time on grafting ratio was studied. SBS and the product (SBS‐g‐MA) were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). GPC data showed that the molecular weight of SBS‐g‐MA is bigger than that of SBS. DSC testing indicated that the glass transition temperature (Tg) of SBS‐g‐MA is higher than that of SBS. By SEM photo, we can observe that some particles which contain more oxygen atom grew out from the surface of SBS‐g‐MA when grafting ratio reached at 5.6%, and the amount and diameter of particles increased with increasing of grafting ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4425–4429, 2006  相似文献   

5.
Flame retardant acrylonitrile–butadiene–styrene (FR‐ABS) blends were prepared by blending tetrabromobisphenol A (TBBA) and antimony trioxide (Sb2O3) into the ABS resin. LICA 44 grafted styrene–maleic anhydride (SMA‐g‐L44) copolymers were used as high molecular weight (MW) coupling agents to modify the properties of the FR‐ABS blends, and the copolymers with different LICA 44 grafting ratios were produced via the in vivo and the in situ reactions, respectively. The LICA 44 percentage and the MW of the SMA‐g‐L44 copolymers are important factors influencing the effects of the high MW coupling agent. The impact strength and the tensile yield stress of SMA‐g‐L44 modified FR‐ABS blends increased obviously. The elongation at break and the limiting oxygen index of which also showed an increasing trend after the modification. The coupling effect of SMA‐g‐L44 became weaker at a higher grafting ratio. SEM observation showed that the interfacial boundary in the FR‐ABS became fuzzy after using the SMA‐g‐L44 copolymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 865–874, 1999  相似文献   

6.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

7.
The properties of poly(ethylene terephthalate) (PET) and polypropylene (PP) blends and PET/maleic anhydride-grafted PP (MAgPP) reactive blends were investigated. Two blend systems were immiscible based on tan δ measured by dynamic mechanical analyzer (DMA). In case of PET/MAgPP blends, the reaction of ester groups of PET and MA sites on MAgPP occurred during melt mixing at 280°C for 30 min. The reaction was confirmed by a new peak between the glass transition temperatures of PET-rich and MAgPP-rich phase on tan δ curves, as well as from the rheological properties. From the morphology, the improvement of the dispersibility in PET/MAgPP reactive blends was observed. The modulus of PET/MAgPP blends was higher than that of PET/PP blends, and the strength of PET/MAgPP blends showed the good adhesion compared with the PET/PP blends. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 389–395, 1998  相似文献   

8.
The influence of iodine on the free volume of acrylonitrile–butadiene–styrene (ABS) was investigated by positron annihilation lifetime spectroscopy (PALS). The results indicate the filling of free-volume holes, formation of a positronium–iodine compound (PsI2/PsI), and possible charge-transfer complexes (CTCs) in the initial stages and the swelling of iodine in the final stages of sorption. The present study also revealed that iodine acts as a chemical quencher of o-Ps. The average size of the free volume suggests that I3 is the predominant species that fills up the free-volume holes during iodination. The diffusion process in the present case shows non-Fickian behavior and deviates from Fujita's free-volume concept as far as the fractional free volume and diffusion coefficient are concerned. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 2077–2085, 1998  相似文献   

9.
Acrylonitrile–butadiene–styrene (ABS) and high‐impact polystyrene (HIPS) are two of the plastics most frequently used as outer casings for computer equipment such as monitors, keyboards, and other similar components. We assessed the effects of the recycling and blending of ABS and HIPS on mechanical properties. We found that the effects of recycling on ABS and HIPS were similar, in that changes in glass‐transition temperatures, tensile strengths, and tensile moduli were negligible, but strains to failure and impact strengths were reduced considerably. Blending proportions of ABS and HIPS caused no more deterioration in properties than occurred as a result of the recycling process, and the presence of small proportions of one material in the other actually restored significant amounts of ductility, as seen by increases in the strains to failure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 572–578, 2002  相似文献   

10.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

11.
Blends of polycarbonate (PC) and poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) with different compositions are characterized by means of dynamic mechanical measurements. The samples show phase separation. The shift in the temperatures of the main dynamic mechanical relaxation shown by the blend with respect to those of the pure components is attributed to the migration of oligomers present in the ABS toward the PC in the melt blending process. A comparison with other techniques (dielectric and calorimetric analysis) and the application of the Takayanagi three block model confirm this hypothesis. In all the studied blend compositions (ABS weight up to 28.6%) the PC appears as the matrix where a disperse phase of ABS is present. The scanning and transmission electron microscopy micrographs show that the size of the ABS particles increases when the proportion of ABS in the blend increases. The FTIR results indicate that the interaction between both components are nonpolar in nature and can be enhanced by the preparation procedure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1507–1516, 2002  相似文献   

12.
This article reports the effect of the mixing process on the electromagnetic interference (EMI) shielding effectiveness of nickel/acrylonitrile–butadiene–styrene (ABS) composites. Nickel in either powder or filament form was used as the filler material. It was mixed with ABS by two mixing processes: one was the Brabender‐mixing method, in which nickel was mixed in the polymer melt by a strong shear at high temperatures, and the other was a simple dry mixing method performed in a centrifugal ball mill. Our results showed that the dry‐mixing method could produce EMI shielding effectiveness of 36 dB at the 3 vol % nickel filaments level. In contrast, we need 20 vol % nickel powder to exhibit some shielding effectiveness for the Brabender method. After the nondestructive X‐ray examination and four‐point probe resistivity measurements, we concluded that better EMI shielding effectiveness could be achieved when the mixing method provided a state of uniformity on the macroscale, but not on the microscale. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 128–135, 2005  相似文献   

13.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

14.
The effects of physical aging of a 75 : 25 PC/ABS blend have been studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). From DSC, two distinct peak endotherms at about 90°C and 110°C, which are associated with the glass transition of ABS (Tg,ABS) and PC (Tg,PC) components, respectively, were observed. When progressive aging was monitored at 80°C for over 1000 h, the changes in enthalpic relaxation, glass and fictive temperatures for the blend followed similar trends to those already seen in the literature for PC aged between 125 and 130°C. The rate of enthalpy relaxation was also comparable. The plot of peak endotherm against logarithmic aging time for the PC blend constituent, however, behaved quite differently from the linear relationship known for highly aged PC. The ABS peak component also appeared to be insensitive to aging. Both observations were confirmed to be statistically significant using analysis of variance methods. Using temperature modulated‐DSC, there is evidence that aging increases the blend miscibility as the Tg,PC shifts toward the stationary Tg,ABS during aging. Parallel FTIR investigations found oxidation of butadiene during aging to be even at this relatively low temperature, forming hydroxyl and carbonyl degradation products. The presence of ABS in the blend also appeared to have prevented the shifting from the trans‐cis to trans‐trans arrangement of the carbonate linkage, which is a well‐known phenomenon during elevated temperature aging of PC alone. Moreover, the carbonate linkage appears to have been at the lower energy, trans‐trans, arrangement prior to the aging process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Nonbonded and chemically bonded organic–inorganic composite materials, ABS/SiO2 and ABS Si(OCH3)3/SiO2, were prepared by the sol‐gel processing of tetraethoxysilane (TEOS) in the presence of ABS and trimethoxysilyl functionalized ABS, ABS Si(OCH3)3, under the catalization of NH4F. The ABS Si(OCH3)3 was obtained by oxidizing the cyano group in ABS with hydrogen peroxide, then subsequently underwent ring‐opening reaction with 3‐glycidoxypropyltrimethoxysilane (GPTS). The ABS Si(OCH3)3/TEOS sol‐gel liquid solution system, in which the ABS chains formed the covalent bonds with silica network and helped fix the polymer chains in the silica network, had a shorter gelation time than that of the ABS/TEOS system, which linked ABS chains to the silica network only by hydrogen bonding the cyano groups in ABS to the silanol groups. The morphology and properties of composite were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), tensile tests, and thermogravimetry. It was found that the composite prepared from ABS Si(OCH3)3 had higher tensile strength, glass transition point (Tg), thermal stability, and more homogeneous morphology because of the existence of the covalent bond between ABS chains and silica network that increased the compatibility between the organic and inorganic phases. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 275–283, 2000  相似文献   

16.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

17.
The compatibilization of polypropylene/acrylonitrile–styrene (PP/AS) blends through the addition of peroxide (DCP) was investigated in this study. The grafting reaction between PP and AS with the addition of peroxide occurred during the reactive‐blending process. The in situ‐formed grafting copolymers of PP‐g‐AS and AS‐g‐PP were then characterized by FTIR. The optimum concentration of the initiator, DCP, was 0.2 wt %, and the reaction temperature should be above 195°C. It was found that, when AS was the major component of the blends, the grafting of AS onto PP was the main process; conversely, when PP was the major component, PP was grafted onto AS. These results can be explained by the main‐chain scission of PP during the reactive‐blending process. With increase of the AS component, the total degree of grafting increased at first and then decreased after the composition of the blends reached 50/50. The maximum degree of grafting was found to be 6 wt % for the 50/50 PP/AS/DCP blend. PP was more degradable than was AS in the presence of peroxide at high temperatures. The MFR values of the PP/AS/DCP blends were slightly greater than were those of the simple PP/AS blends, which means that blending is an effective way to protect PP from degradation. SEM micrographs of the cross section of PP/AS/DCP showed a fine dispersion and a smaller domain size of the dispersed‐phase particles, implying that the in situ‐formed grafting copolymers act as a compatibilizer to reduce the interfacial tension between the PP and AS phases. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1284–1290, 2001  相似文献   

18.
Block copolymers, polystyrene‐b‐poly(styrene‐co‐maleic anhydride), have been prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization technique using three different approaches: 1‐phenylethyl phenyldithioacetate (PEPDTA) directly as RAFT agent, mediated polystyrene (PS) block as the macromolecular PS‐RAFT agent and mediated poly(styrene‐maleic anhydride) (SMA) block with alternating sequence as the macromolecular SMA‐RAFT agent. Copolymers synthesized in the one‐step method using PEPDTA as RAFT agent possess one PS block and one SMA block with gradient structure. When the macromolecular RAFT agents are employed, copolymers with one PS block and one alternating SMA block can be produced. However, block copolymers with narrow molecular weight distribution (MWD) can only be obtained using the PS‐RAFT agent. The MWD deviates considerably from the typical RAFT polymerization system when the SMA is used as the RAFT agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Hydroquinone bis(diphenyl phosphate) (HDP) has been adopted to prepare acrylonitrile–butadiene–styrene copolymer (ABS)/HDP/novolac phenol (NP) composites. The limiting oxygen index (LOI) of ABS/HDP/NP composites is tested in this paper. The LOI value first grows with increasing ratio of HDP to NP, after reaching its maximum it decrease with further increasing ratio. The synergistic effect of HDP and NP exerted on the microstructure and the flame retardancy of ABS/HDP/NP composites are carefully analyzed by thermogravimetric analysis (TGA), cone calorimeter (CCT), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The results of CCT show that the synergistic action of HDP and NP reduces its heat release rate and smoke production rate. The results of TGA and SEM demonstrated that the introduction of NP and HDP is conducive to the improvement of the thermal stability and the formation of the intumescent char with homogeneous cavities and holes. The EDS results indicate that the introduction of NP could help retain phosphorus in the chars. As a result, the synergistic action of HDP and NP is favorable to the enhancement of flame retardancy of ABS/HDP/NP composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The structure and performance of acrylonitrile–maleic anhydride copolymer membranes with different molecular weights were investigated. The results showed that the water flux of the membrane decreased gradually with increasing molecular weight of the copolymer; the rejection increased only when there was an obvious increase of molecular weight. The addition of an additive (polyvinylpyrrolidone) largely decreased the water flux and rejection of the membrane when the concentration of the copolymer remained unchanged. The higher the molecular weight, the thicker were the transition layer and the wall of the support pore and the better was the anticompactness of the membrane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2521–2527, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号