首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly‐ω‐aminoundecanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c‐H2SO4) to form a spinning dope solution. This solution was used to spin conductive PANI / PA11 fibers by wet‐spinning technology. As‐spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as‐spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as‐spun fibers. The results showed that the coagulating rate of as‐spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as‐spun fibers. The microstructure of as‐spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1458–1464, 2002  相似文献   

2.
Polyethersulfone (PES) hollow‐fiber membranes were fabricated using poly(ethyleneglycol) (PEG) with different molecular weights (MW = PEG200, PEG600, PEG2000, PEG6000, and PEG10000) and poly(vinyl pyrrolidone) PVP40000 as additives and N‐methyl‐2‐pyrrolidone (NMP) as a solvent. Asymmetric hollow‐fiber membranes were spun by a wet phase‐inversion method from 25 wt % solids of 20 : 5 : 75 (weight ratio) PES/PEG/NMP or 18 : 7 : 75 of PES/(PEG600 + PVP40000)/NMP solutions, whereas both the bore fluid and the external coagulant were water. Effects of PEG molecular weights and PEG600 concentrations in the dope solution on separation properties, morphology, and mechanical properties of PES hollow‐fiber membranes were investigated. The membrane structures of PES hollow‐fiber membranes including cross section, external surface, and internal surface were characterized by scanning electron microscopy and the mechanical properties of PES hollow‐fiber membranes were discussed. Bovine serum albumin (BSA, MW 67,000), chicken egg albumin (CEA, MW 45,000), and lysozyme (MW 14,400) were used for the measurement of rejection. It was found that with an increase of PEG molecular weights from 200 to 10,000 in the dope solution, membrane structures were changed from double‐layer fingerlike structure to voids in the shape of spheres or ellipsoids; moreover, there were crack phenomena on the internal surfaces and external surfaces of PES hollow‐fiber membranes, pure water permeation fluxes increased from 22.0 to 64.0 L m?2 h?1 bar?1, rejections of three protein for PES/PEG hollow‐fiber membranes were not significant, and changes in mechanical properties were decreased. Besides, with a decrease of PEG600 concentrations in the dope solution, permeation flux and elongation at break decreased, whereas the addition of PVP40000 in the dope solution resulted in more smooth surfaces (internal or external) of PES/(PEG600 + PVP40000) hollow‐fiber membranes than those of PES/PEG hollow‐fiber membranes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3398–3407, 2004  相似文献   

3.
ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014  相似文献   

4.
Poly(2‐cyano‐p‐phenylene terephthalamide) (CY‐PPTA) was obtained by the polycondensation of terephthaloyl dichloride and 2‐cyano‐p‐phenylene diamine in the mixture of N‐methyl‐2‐pyrrolidone (NMP) and calcium chloride (CaCl2). Washing the polymerized product with water and drying at the elevated temperature inevitably left a small amount of polymerization residues which could be eliminated only by additional washing with acetone. The thermogravimetric and 1H‐/13C‐NMR analyses revealed that the residues were largely composed of NMP which existed as a complex with the polymer. The complex was broken up between 200 and 300 °C and evolved 5 wt % of gaseous products, which had an adverse effect on the physical properties of as‐spun CY‐PPTA fibers obtained by dry jet‐wet spinning. The heat treatment of the as‐spun fibers including residual NMP exhibited some porous morphology on the fiber surface due to the evolved gases. However, the existence of the residual NMP had little effect on the intrinsic viscosity and liquid crystalline phase behavior of the polymer. Both rheological and optical properties exhibited the critical concentration at 3 wt % with the clear schlieren texture of nematic liquid crystalline phase. The inclusion of residual NMP decreased dynamic viscosity and yield stress. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43672.  相似文献   

5.
The structure and mechanical properties of polyacrylonitrile fibers containing small amounts of Zn2+ were investigated. It is possible to interpret the influence of ZnCl2 on the fibers by diffusion. Fibers spun from spinning dope containing ZnCl2 may have a denser and finer structure because ZnCl2 in the spinning dope retards the coagulation rate. The tensile strength and modulus of the fibers are much improved because of the retardation of coagulation. It is probable that the complexation between Zn2+ and CN groups does not contribute to the improvement of the mechanical properties because the amount of ZnCl2 added in a spinning dope is extremely small.  相似文献   

6.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   

7.
In this paper, the effects of γ-butyrolactone (GBL) weight ratio (wGBL) and membrane thickness on the formation of asymmetric flat sheet membranes prepared with P84 (BTDA-TDI/MDI co-polyimide)/N-methyl-2-pyrrolidone (NMP)/GBL casting solutions are investigated. With the increase of membrane thickness, the transition of membrane morphology from sponge-like to finger-like structure occurs at critical structure-transition thickness Lc. Lc and the general sponge-like structure thickness (Lgs) increase with wGBL. For 20 wt.% P84/NMP/GBL casting solution, the membrane morphology changes from finger-like to sponge-like structure at the critical weight ratio of GBL (w? = 0.69). The membrane morphology and performance of hollow fibers spun with various wGBL are observed. Compared with the hollow fiber membranes made of 18 wt.% P84/NMP/GBL dope solution with wGBL = 0.75, the hollow fiber membranes spun with wGBL = 0.25 present a higher permeation flux and a larger MWCO. As wGBL increases from 0.25 to 0.75, the membrane morphology transfers from finger-like to sponge-like structure. An increase in shear rate shifts the rejection curves towards left, and lowers the MWCO of hollow fiber membranes. For hollow fiber membranes spun with wGBL = 0.75, a relatively high permeation flux and a large MWCO are obtained by the wet spinning process.  相似文献   

8.
The direct dual layer spinning of Torlon®/silica hollow fibers with a neat Torlon® lumen layer is reported here for the first time. The dual layer fibers containing a porous Torlon®/silica main structure and a dense, pure Torlon® polymer bore‐side coating provide a simplified, scalable platform from which to construct hollow fiber amine sorbents for postcombustion CO2 capture. After fiber spinning, an amine infusion process is applied to incorporate PEI into the silica pores. After combining dilute Neoprene treatment followed by poly(aramid)/PDMS treatment, a helium permeance of the fiber sorbents of 2 GPU with a He/N2 selectivity of 7.4 is achieved. Ten of the optimized amine‐containing hollow fibers are incorporated into a 22‐inch long, 1/2 inch OD shell‐and‐tube module and the module is then exposed on the shell side to simulated flue gas with an inert tracer (14 mol % CO2, 72 mol % N2, 14 mol % He [at 100% R.H.]) at 1 atm and 35°C in a RTSA system for preliminary CO2 sorption experiments. The fibers are found to have a breakthrough and equilibrium CO2 capacity of 0.8 and 1.2 mmol/g‐ dry fiber sorbent, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41845.  相似文献   

9.
The objectives of this work are, fundamentally, to understand hollow fiber membrane formation from an engineering aspect, to develop the governing equations to describe the velocity profile of nascent hollow fiber during formation in the air gap region, and to predict fiber dimension as a function of air‐gap distance. We have derived the basic equations to relate the velocity profile of a nascent hollow fiber in the air‐gap region as a function of gravity, mass transfer, surface tension, drag forces, spinning stress, and rheological parameters of spinning solutions. Two simplified equations were also derived to predict the inner and outer diameters of hollow fibers. To prove our hypotheses, hollow fiber membranes were spun from 20 : 80 polybezimidazole/polyetherimide dopes with 25.6 wt % solid in N,N‐dimethylacetamide using water as the external and internal coagulants. We found that inner and outer diameters of as‐spun fibers are in agreement with our prediction. The effects of air‐gap distance or spin‐line stress on nascent fiber morphology, gas performance, and mechanical and thermal properties can be qualitatively explained by our mathematical equations. In short, the spin‐line stresses have positive or negative effects on membrane formation and separation performance. A high elongational stress may pull molecular chains or phase‐separated domains apart in the early stage of phase separation and create porosity, whereas a medium stress may induce molecular orientation and reduce membrane porosity or free volume. Scanning electron microscopic photographs, coefficient of thermal expansion, and gas selectivity data confirm these conclusions. Tg of dry‐jet wet‐spun fibers is lower than that of wet‐spun fibers, and Tg decreases with an increase in air‐gap distance possibly because of the reduction in free volume induced by gravity and elongational stress. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 379–395, 1999  相似文献   

10.
In this study, a high performance poly(ether sulfone) (PES) hollow fiber ultrafiltration (UF) membrane has been prepared for removal of natural organic matter (NOM). The membrane was spun from a dope solution containing PES/poly (vinyl pyrrolidone) (PVP 40K)/N‐methyl‐2‐pyrrolidone (NMP) by using a wet‐spinning process. Characterization of the membrane in terms of pure water flux, molecule weight cut‐off (MWCO), and retention for a model humic acid (HA) were conducted, and the fouling resistance was analyzed. The experimental results showed that the membrane had a pure water permeability of 20 × 10?5 L m?2 h?1 Pa?1 and a nominal MWCO of 6000 Da. The results also showed that the membrane retention for humic acid was over 97% and both productivity and selectivity for HA increased with increasing feed velocity. The PES membrane in this study exhibited a much lower fouling tendency than the commercial polysulfone membrane. SEM images revealed that the membrane had an outer dense skin and a porous inner surface. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 430–435, 2006  相似文献   

11.
The cloud points of PPESK/NMP/H2O ternary system at different temperatures were measured by titrimetric method. The binodal lines in the ternary phase diagram of the poly(phthalazinone ether sulfone ketone (PPESK) dope system was determined, on the basis of the cloud point experimental data being linearly fitted with the semiempirical linear cloud point correlation. Furthermore, phase separation behavior during the phase inversion of PPESK membrane‐forming system was discussed in terms of the phase diagram. Then, dry–wet spinning technique was employed in manufacturing PPESK hollow fiber membranes by immersion precipitation method. The cross‐section morphologies of hollow fibers were observed by scanning electronic microscopy. Also, the effects of dope solution composition and spinning parameters, including the coagulant composition and the spinning temperature on the separation performances of fibers, were evaluated by permeability measurements. The thermotolerance of the PPESK hollow fiber membranes prepared in the work was examined for the permeation operation at different temperatures and pressure differences. The experimental results showed that pure water flux increases several fold along with the temperature increases from 20 to 80°C at different operation pressures, while the solute rejection only decreases slightly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 878–884, 2006  相似文献   

12.
In this work, the preparation of gas separating carbon hollow fiber membranes based on a 3,3′4,4′- benzophenone tetracarboxylic dianhydride and 80% methylphenylene-diamine + 20% methylene diamine co-polyimide precursor (BTDA-TDI/MDI, Ρ84 Lenzing GmbH), their permselectivity properties as well as details of the carbon nanostructure are reported. Hollow fibers were initially prepared by the dry/wet phase inversion process in a spinning set-up, while the spinning dope consisted of P84 as polymer and NMP as solvent. The developed polymer hollow fibers were further carbonized in nitrogen at temperatures up to 1173 K. Thermogravimetric analysis was used to investigate the weight loss during the carbonization process. The nitrogen, methane and carbon dioxide adsorption capacity of the prepared materials was determined gravimetrically at 273 and 298 K and hydrogen adsorption experiments were performed at 77 K up to 1 bar. Scanning electron microscopy was used to elucidate the morphological characteristics and the nanostructure while H2 sorption at 77 K was applied to evaluate the microporosity of the developed carbon hollow fiber membranes. In all cases, the permeability (Barrer) of He, H2, CH4, CO2, O2 and N2 were measured at atmospheric pressure and temperatures 313, 333 and 373 K and were found higher than those of the precursor. Moreover, the calculated permselectivity values were significantly improved. The developed carbon fibers exhibit rather low H2 permeance values (8.2 GPU or 2.74 × 10−9 mol/m2·s·Pa) with a highest H2/CH4 selectivity coefficient of 843 at 373 K.  相似文献   

13.
Highly permeable, selective, and stable asymmetric membranes are required to replace the traditional separation approaches for natural gas purification with higher energy efficiency and smaller footprints. Herein, we report on the design and engineering of defect-free asymmetric hollow fiber membranes with a thin dense skin and highly porous substrate to effectively deal with aggressive natural gas. A crosslinkable polymer with rigid molecular structure and high molecular weight was synthesized for developing spinning dope with desirable solution properties. Phase separation behavior of the polymer was carefully controlled by systematic formulation of the dope composition and optimizing spinning conditions, thereby realizing simultaneously tuning dense skins and porous substrates of the spun asymmetric hollow fiber membranes. The crosslinked hollow fiber membrane, with well-preserved delicate asymmetric nanostructures, exhibited unprecedentedly high and stable separation performance for long-term processing extremely aggressive CO2/CH4 mixtures (with pressure up to 820 psi containing C6+ hydrocarbons), thereby showing great potential for practical application of natural gas purification. This work offers a new platform to create hollow fiber membranes with both high permeance and plasticization resistance in natural gas service. © 2019 American Institute of Chemical Engineers AIChE J, 65: 1269–1280, 2019  相似文献   

14.
An outer‐skin hollow‐fiber ultrafiltration (UF) membrane was spun from a new dope solution containing cellulose acetate (CA)/poly(vinyl pyrrolidone) (PVP 360K)/N‐methyl‐2‐pyrrolidone (NMP)/water using a wet‐spinning technique. The as‐spun fibers were posttreated with a hypochlorite solution over a range of concentrations for a fixed period of 24 h. The experimental results showed that the pure water flux of the treated membrane increased with increasing hypochlorite concentration. The treated membrane experienced an increased fouling tendency with increasing hypochlorite concentration because the hydrophilicity of the treated membrane decreased as a result of the removal of PVP contents in the membrane matrix after hypochlorite treatment. SEM images revealed that the membrane had an outer dense skin, a porous inner surface, and a spongelike structure, which confirmed that addition of PVP favored the suppression of macrovoids in the membrane. The membrane pore size could be significantly increased when the hypochlorite concentration reached 200 mg/L. It was concluded that hypochlorite treatment provided an additional option to easily alter the pore size of UF membranes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 227–231, 2005  相似文献   

15.
The immiscibility induced phase separation (I2PS) process was introduced as a novel method to fabricate hollow fibers with exceptionally high water permeance and reasonably high water/ethanol selectivity in dehydration of ethanol by pervaporation. As a continuation of the previous work, this study discloses the mechanisms to enhance the performance of hollow fibers spun via I2PS by elucidating the material selection at the inner‐layer. Moreover, it revealed the methods to reduce mass‐transport resistance by enhancing surface porosity for both inner and outer surfaces to further improve the permeation flux of the membranes. The continuous performance test demonstrates that the fibers spun from the I2PS possess a stable dehydration performance throughout the monitored period of 300 h. A comparison with pervaporation membranes in the literatures verifies the superiority of the membranes spun via I2PS process with the highest water permeation flux of 9.5 kg/m2 h and the permeate water purity of 95.8 wt % at 80°C. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3006–3018, 2013  相似文献   

16.
We investigated the sorption isotherms of O2, N2, CH4, and CO2 gases in 6FDA–durene, 6FDA–1,4‐phenylenediamine (6FDA–pPDA), and 6FDA–1,3‐phenylenediamine (6FDA–mPDA) homopolymers and 6FDA–durene/pPDA and 6FDA–durene/mPDA copolyimides. The solubilities decrease in the order of the inherent condensabilities of the penetrant gases, namely, CO2, CH4, O2, and N2. The chemical structures of the polymer, as well as the chain packing, determine the sorption properties of these homopolymers and copolymers. The FDA–durene homopolymer has the highest solubility for all gases because of its high specific free volume and fractional free volume. The solubilities of the copolymers increase with an increasing 6FDA–durene content, while the solubility selectivities of the copolymers only vary slightly. The values of KD (Henry's law constant) and CH′ (Langmuir site capacity) of these copolyimides decrease with a decreasing 6FDA–durene content. To our surprise, contradictory to the previous known fact that the meta‐connected materials tend to have denser molecular packing than that of the para‐linked materials for homopolymers, the 6FDA–durene/mPDA 80/20 copolymer has higher gas solubilities than those of the 6FDA–durene/pPDA 80/20 copolymer. The random moiety sequence within the copolymer may be the main cause for the abnormal phenomenon. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2187–2193, 2003  相似文献   

17.
An isotactic polypropylene hollow microfiber was continuously produced by using a carbon dioxide (CO2) laser‐thinning method. To prepare the hollow microfiber continuously, the apparatus used for the thinning of the solid fiber was improved so that the laser can circularly irradiate to the hollow fiber. Original hollow fiber with an outside diameter (OD) of 450 μm and an internal diameter (ID) of 250 μm was spun by using a melt spinning machine with a specially designed spinneret to produce the hollow fiber. An as‐spun hollow fiber was laser‐heated under various conditions, and the OD and the ID decreased with increasing the winding speed. For example, when the hollow microfiber obtained by irradiating the CO2 laser to the original hollow fiber supplied at 0.30 m min?1 was wound up at 800 m min?1, the obtained hollow microfiber had an OD of 6.3 μm and an ID of 2.2 μm. The draw ratio calculated from the supplying and the winding speeds was 2667‐fold. The hollow microfibers obtained under various conditions had the hollowness in the range of 20–30%. The wide‐angle X‐ray diffraction patterns of the hollow microfibers showed the existence of the highly oriented crystallites. Further, the OD and ID decreased, and the hollowness increased by drawing hollow microfiber obtained with the laser‐thinning. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2600–2607, 2006  相似文献   

18.
In the steady fabricating process, two‐dimensional hollow fiber membrane near the spinneret was numerically simulated using the finite element method (FEM). The unknown positions of free surface and moving interface were calculated simultaneously by the velocity and pressure fields. The effects of seven relevant parameters, i.e., inertia term, gravity term, dope flow rate, bore flow rate, dope viscosity, tensile force, end velocity and non‐Newtonian on the velocity and diameter profile were studied. On the basis of the simulated results, the inertia term in hollow fiber‐spinning process was safely neglected in low speed, while the effect of gravity was not be neglected. Besides, the outer diameter of the fibers increased with an increase of dope flow rate and bore flow rate; Large tensile force or large end velocity could cause large deformation in the air gap; larger viscous dope solution tended to make less deformation in the air gap. It was found that an increase of the dope flow rate at small dope flow rate resulted in an increase of the inner diameter, while at large dope flow rate, it decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2067–2074, 2006  相似文献   

19.
Nickel is a cheaper metallic material compared to palladium membranes for H2 separation. In this work, metallic Ni hollow fiber membranes were fabricated by a combined phase inversion and atmospheric sintering method. The morphology and membrane thickness of the hollow fibers was tuned by varying the spinning parameters like bore liquid flow rate and air gap distance. H2 permeation through the Ni hollow fibers with N2 as the sweep gas was measured under various operating conditions. A rigorous model considering temperature profiles was developed to fit the experimental data. The results show that the hydrogen permeation flux can be well described by using the Sieverts’ equation, implying that the membrane bulk diffusion is still the rate‐limiting step. The hydrogen separation rate in the Ni hollow fiber module can be improved by 4–8% when switching the co‐current flow to the countercurrent flow operation. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3026–3034, 2017  相似文献   

20.
In order to fabricate hollow fiber mixed matrix membrane (HFMMM) for long‐term CO2 absorption process, ZSM‐5 (Zeolite Socony Mobil–5) zeolite was modified using hexadecyltrichlorosilane for increasing hydrophobicity and then added to the polyvinylidene fluoride (PVDF) spinning dope. The in‐house made HFMMMs were characterized in terms of gas permeance, overall porosity, average pore size, effective surface porosity, surface roughness, mechanical stability, and wetting resistance. The morphology of the HFMMMs was studied using SEM. The cross‐sectional SEM images indicated that the membrane structure has changed from sponge‐like to finger‐like by ZSM‐5 loading. The surface roughness increased by increasing ZSM‐5 concentration in the spinning dope. The HFMMM spun from the spinning dope with 0.5 wt % of ZSM‐5 zeolite showed that the CO2 absorption flux decreased 18.9% in the initial 115 h of the operation and then the absorption flux remained constant until the end of the operation. For plain PVDF HFM the absorption flux decreased 36% from the initial value in the first 15 h of the experiment. Thus it could be concluded that the long term stability of HFM was improved by the incorporation of ZSM‐5. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44606.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号