首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyl-terminated polyurethane (HTPU) prepolymer and crystalline polymer particles were used to modify the toughness of diglycidyl ether of bisphenol-A (DGEBA) epoxy cured with diaminodiphenyl sulphone (DDS). For the crystalline polymers, poly(butylene terephthalate) (PBT) and poly(hexamethylene adipamide) (Nylon 6,6), with particle size under 401 m were employed. The PU-modified epoxies exhibit a significantly improved fracture toughness. The -relaxation of cured epoxy resin shows a more clear two-phase separation as the polyurethane content increases. Besides, the addition of crystalline polymer particles could further enhance the toughness of PU-modified epoxy at low particle content. Scanning electron microscopy (SEM) shows that PU-modified epoxy has a two-phase structure. The fracture properties of PBT particle filled epoxy are found to be better than those of Nylon 6,6 particle filled epoxy. Nevertheless, the toughening effect of these crystalline polymer particles is much less efficient than that of PU modification.  相似文献   

2.
Hydroxyl-, amine-, and anhydride-terminated polyurethane (PU) prepolymer which were synthesized from polyether (PTMG) diol, 4,4′-diphenylmethane diisocyanate (MDI), and a coupling agent bisphenol-A, 4,4′-diaminodiphenyl sulfone (DDS), or benzophenonetetracarboxylic dianhydride (BTDA) were used to modify the toughness of bisphenol-A diglycidyl ether epoxy resin (DGEBA) cured with 4,4′-diaminodiphenyl sulfone. From the experimental results, it was shown that the modified resin displayed a significant improvement in fracture energy (GIC) and also in its interfacial shear strength with polyaramid fiber. It was more enhanced with increase of the PU modifier wt % content. The hydroxyl-terminated PU was found to be the most effective among those three prepolymers. In addition, the toughening mechanism was discussed based on the morphological and the dynamic mechanical behavior of the modified epoxy resin. Fractography of the specimen observed by transmission (TEM) and scanning electron microscopy (SEM) revealed that the modified resin had a two-phase structure. The existence of an unclean fiber surface after its fiber pullout test suggested that a ductile fracture might have occurred. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Phenolic hydroxyl-terminated (HTPU) and aromatic amine-terminated (ATPU) PU modifiers were prepared by reacting two different macroglycols (PTMG, polytetramethylene glycol, Mn = 2000, and PBA, Polybutylene adpate, Mn = 2000) with 4,4′-diphenylmethane diisocyanate (MDI), then further coupling with two different coupling agents, bisphenol A or 4,4′-diaminodiphenyl sulfone (DDS). These four types of PU prepolymers were used to modify the epoxy resin with 4,4′-diamino-diphenyl sulfone as a curing agent. From the experimental results, it was shown that the values of fracture energy, GIC, for PU-modified epoxy were dependent on the macroglycols and the coupling agents. Scanning electron microscopy (SEM) revealed that the ether type (PTMG) of PU-modified epoxy showed the presence of an aggregated separated phase, which varied between 0.5 μm and 4 μm in the ATPU (PTMG) and between 1 μm and 1.5 μm in HTPU (PTMG) modified system. On the contrary, the ester type (PBA) PU-modified epoxy resin showed a homogeneous morphology and consequently a much smaller effect on toughening for its good compatibility with the epoxy network. In addition, it was found that the hydroxyl-terminated bisphenol A as a coupling agent improved fracture toughness more than the amine-terminated DDS because of effective molecular weight buildup by a chain extension reaction. The glass transition temperature (Tg) of modified epoxy resin as measured by dynamic mechanical analysis (DMA) was lower in PTMG-based PU than in a PBA-based PU series with the same weight of modifier.  相似文献   

4.
Poly(ether ether ketone) (PEEKDT), hydroxyl terminated poly(ether ether ketone) (PEEKDTOH) and fluorine terminated poly (ether ether ketone) (PEEKDTF) with pendent ditert-butyl groups were synthesized by the nucleophilic substitution reaction of 4,4′-difluorobenzophenone with 2,5-ditert-butylhydroquinone in N-methyl-2-pyrrolidone medium using anhydrous potassium carbonate as catalyst. Diglycidyl ether of bisphenol-A epoxy resin was blended with PEEKDT, PEEKDTOH, and PEEKDTF, and cured with 4,4′-diaminodiphenylsulfone (DDS). The polymers formed heterogeneous blends before curing, and upon curing the polymers got dispersed in the epoxy matrix. The mechanical properties of the cured blends were slightly lower than that of the unmodified resin. The fracture toughness increased with the addition of ditert-butyl PEEK into epoxy resin and the extent of improvement was dependent on the type of modifier used. Hydroxyl terminated polymers gave up to 40% increase in fracture toughness. The dynamic mechanical spectrum of the blends showed only a single Tg due to the proximity of the glass transition temperature of modified PEEK and DDS cured epoxy resin.  相似文献   

5.
Poly(ester imide)s, prepared by the reaction of phthalic anhydride, N‐(4‐carboxyphenyl) trimellitimide and 1,2‐ethanediol, were used to improve the toughness of bisphenol‐A diglycidyl ether epoxy resin cured with 4,4′‐diaminodiphenyl sulfone (DDS). The poly(ester imide)s include poly(ethylene phthalate‐co‐ethylene N‐(1,4‐phenylene) trimellitimide dicarboxylate)s (PESIs) having 10, 20 and 30 mol% trimellitimide (TI) units, respectively. PESIs having 10 and 20 mol% TI units were effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt% of PESI (20 mol% TI unit, M W 19300 g mol?1) led to a 55% increase in the fracture toughness (KIC) of the cured resin (with an increase in flexural strength and modulus) and the modified resin had a particulate morphology. PESI having 30 mol% TI units was not effective because of degradation of the modifier by DDS. The toughening mechanism is discussed in terms of morphological and dynamic viscoelastic behaviour of the modified epoxy resin system. © 2001 Society of Chemical Industry  相似文献   

6.
A semicrystalline polymer, isotactic poly(phenyl glycidyl ether) (i‐PPGE) was used as a modifier for epoxy resin; 1,8‐Diamino‐p‐methane (MNDA) and 4,4′‐Diamino diphenyl sulfone (DDS) were used as curing agents. In the MNDA‐cured resins, the dispersed phase were spherical particles with diameters in the range of 0.5–1.0 μm when the resin was blended with 5 phr i‐PPGE. In the DDS‐cured resins, the particle size distribution of the dispersed phase was much wider. The difference was traced back to the reactivity of the curing agent and the different regimes used for curing. Through dynamic mechanical analysis, it was found that in the MNDA‐cured systems, i‐PPGE had a lower crystallinity than in the DDS‐cured system. In spite of the remarkable difference in the morphology and microstructure of the modified resins cured with these two curing agents, the toughening effects of i‐PPGE were similar for these resins. The critical stress intensity factor (KIC) was increased by 54% and 53%, respectively, for the resins cured by DDS and by MNDA, blending with 5 phr of the toughner. i‐PPGE was comparable with the classical toughners carboxyl‐terminated butadiene‐acrylonitrile copolymers in effectiveness of toughening the epoxy resin. An advantage of i‐PPGE was that the modulus and the glass‐transition temperature of the resin were less affected. However, this modifier caused the flexural strength to decrease somewhat. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1223–1232, 2002; DOI 10.1002/app.10445  相似文献   

7.
Hydroxyl‐terminated poly (ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) synthesized from 4,4′‐difluorobenzophenone and tert‐butyl hydroquinone was blended with diglycidyl ether of bisphenol‐A (DGEBA) epoxy resin. A diamine, 4,4′‐diaminodiphenyl sulfone (DDS) was used as the curing agent. The thermal and mechanical properties, fracture toughness, and morphology of the blends were investigated. Morphological analysis of the blends revealed a particulate structure with PEEKTOH phase dispersed in the epoxy matrix. Unlike classical polymer blend systems, increase in concentration of PEEKTOH does not increase the domain size. Instead, a decrease is obtained. The fracture toughness increased with the addition of oligomer without much decrease in tensile and flexural strengths. Addition of 15 phr oligomer gave maximum toughness. The dispersed PEEKTOH initiated several mechanisms that improved the fracture toughness of the blends. The cross‐link density calculated from the storage modulus in the rubbery plateau region decreased with the increase in PEEKTOH. The thermal stability of epoxy resin remained unaffected even after blending with PEEKTOH. POLYM. ENG. SCI., 45:1645–1654, 2005. © 2005 Society of Plastics Engineers  相似文献   

8.
A copolymer comprising poly(oxymethylene) (POM, polyacetal) was used to improve the fracture toughness of a resin based on diglycidyl ether of bisphenol A (DGEBA) cured with 3,3′-dimethyl-5,5′-diethyl-4,4′-diaminodiphenyl methane. POM was a less effective modifier for epoxies and a third component was used as a toughener or a compatibilizer for POM. The third component includes polypropylene glycol-type urethane prepolymer (PU) and aromatic polyesters. The hybrid modifiers composed of POM and PU were more effective as modifiers for toughening epoxies than POM alone. In the ternary DGEBA/POM/PU (90/10/10wt ratio) blend, the fracture toughness, KIC, for the modified resin increased 50% with retention of flexural properties and a slight decrease in glass transition temperature (Tg) compared with those of the unmodified epoxy resin. The aromatic polyesters include poly(ethylene phthalate) (PEP), the related copolyesters and poly(butylene phthalate). PEP was most effective of them as a third component in the hybrid modifier. In the ternary DGEBA/POM/PEP (85/15/10) blend, KIC for the modified resin increased 70% with medium loss of flexural strength and retention of Tg. The toughening mechanism is discussed in terms of morphological and dynamic viscoelastic behaviour of the modified epoxy resin systems. ©1997 SCI  相似文献   

9.
A new type of epoxy resin containing a 4,4′‐biphenylene moiety in the backbone (Bis‐EBP) is synthesized and confirmed by elemental analysis, infrared spectroscopy, and 1H‐nuclear magnetic resonance spectroscopy. In addition, to evaluate the influence of the 4,4′‐biphenylene group in the structure, an epoxy resin having a 1,4‐phenylene group in place of the 4,4′‐biphenylene moiety (Bis‐EP) is synthesized. The cured polymer obtained through the curing reaction between the new biphenyl‐containing epoxy resin and phenol novolac is used for making a comparison of its thermal and physical properties with those obtained from Bis‐EP and bisphenol‐A (4,4′‐isopropylidenediphenyl)‐type epoxy resin (Bis‐EA). The cured polymer obtained from Bis‐EBP shows markedly higher fracture toughness of 1.32 MPa m1/2, higher glass transition temperature, lower moisture absorption, and higher thermal decomposition temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 690–698, 1999  相似文献   

10.
Improving properties of polyurethane (PU) elastomers have drawn much attention. To extend the properties of the modified PU composite, here a new method via the reaction of poly(urethane‐imide) diacid (PUI) and silane‐modified epoxy resin (diglycidyl ether of bisphenol A) was developed to prepare crosslinked poly (urethane‐ imide)/epoxy/silica (PUI/epoxy/SiO2) hybrids with enhanced thermal stability. PUI was synthesized from the reaction of trimellitic anhydride with isocyanate‐terminated PU prepolymer, which was prepared from reaction of polytetramethylene ether glycol and 4,4′‐diphenylmethane diisocyanate. Thermal and mechanical properties of the PUI/epoxy/SiO2 hybrids were investigated to study the effect of incorporating in situ SiO2 from silane‐modified epoxy resin. All experimental data indicated that the properties of PUI/epoxy/SiO2 hybrids, such as thermal stability, mechanical properties, were improved due to the existence of epoxy resin and SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Hydroxy‐terminated poly(arylene ether nitrile) oligomers with pendent tert‐butyl groups (PENTOH) were synthesized by the nucleophilic aromatic substitution reaction of 2,6‐dichlorobenzonitrile with tert‐butyl hydroquinone in N‐methyl‐2‐pyrrolidone medium with anhydrous potassium carbonate as a catalyst at 200°C in a nitrogen atmosphere. The PENTOH oligomers were blended with diglycidyl ether of bisphenol A epoxy resin and cured with 4,4′‐diaminodiphenyl sulfone. The curing reaction was monitored with infrared spectroscopy and differential scanning calorimetry. The morphology, fracture toughness, and thermomechanical properties of the blends were investigated. The scanning electron micrographs revealed a two‐phase morphology with a particulate structure of the PENTOH phase dispersed in the epoxy matrix, except for the epoxy resin modified with PENTOH with a number‐average molecular weight of approximately 4000. The storage modulus of the blends was higher than that of the neat epoxy resin. The crosslink density calculated from the storage modulus in the rubbery plateau region decreased with an increase in PENTOH in the blends. The fracture toughness increased more than twofold with the addition of PENTOH oligomers. The tensile strength of the blends increased marginally, whereas the flexural strength decreased marginally. The dispersed PENTOH initiated several toughening mechanisms, which improved the fracture toughness of the blends. The thermal stability of the epoxy resin was not affected by the addition of PENTOH to the epoxy resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Water absorption and thermomechanical properties of epoxy systems based on multifunctional dicyclopentadiene epoxy novolac resin Tactix556 cured with 4,4′ diaminodiphenilsulfone (4,4′DDS) as curing agent has been studied. The base system was modified by the addition of a novel 40 : 60 PES : PEES (Polyethersulphone : Polyetheretheresulphone) amine‐ended copolymer to improve toughness properties. The effect of thermoplastic addition on water adsorption was studied by gravimetric experiments. The viscoelastic properties of the resulting blend were analyzed by means of dynamic mechanical thermal analysis. The formulated systems were compared with a system based on tetraglycidyl‐4,4′diaminodiphenylmethane resin (MY721) cured with 4,4′ diaminodiphenilsulfone. The use of Tactix556 resin showed that water uptake values were minimized while retaining high glass transition temperatures, and toughness values were found in the same range of standard toughened matrices used for aerospace composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4880–4887, 2006  相似文献   

13.
Poly(1,4‐cyclohexylenedimethylene phthalate) s, prepared by the reaction of phthalic anhydride and 1,4‐cyclohexane dimethanol (35/65 or 73/27 mol % cis/trans or trans alone), have been used to improve the toughness of bisphenol‐A diglycidyl ether epoxy resin cured with 4,4′‐diaminodiphenyl sulfone. The aromatic polyesters include poly(cis/trans‐1,4‐cyclohexylenedimethylene phthalate) (PCP) based on a commercial cyclohexanedimethanol, poly(trans‐1,4‐cyclohexylenedimethylene phthalate) (trans‐PCP) and poly(cis/trans‐1,4‐cyclohexylenedimethylene phthalate) (cis‐rich PCP) prepared from a cis‐rich diol. The polyesters used were soluble in the epoxy resin without solvents and were effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt% of PCP (MW 6400 g mol−1) led to an 80% increase in the fracture toughness (KIC) of the cured resin with no loss of mechanical and thermal properties. The toughening mechanism is discussed in terms of morphological and dynamic viscoelastic behaviours of the modified epoxy resin system. © 2000 Society of Chemical Industry  相似文献   

14.
Amine‐terminated poly(arylene ether sulfone)–carboxylic‐terminated butadiene‐acrylonitrile–poly(arylene ether sulfone) (PES‐CTBN‐PES) triblock copolymers with controlled molecular weights of 15,000 (15K) or 20,000 (20K) g/mol were synthesized from amine‐terminated PES oligomer and commercial CTBN rubber (CTBN 1300x13). The copolymers were utilized to modify a diglycidyl ether of bisphenol A epoxy resin by varying the loading from 5 to 40 wt %. The epoxy resins were cured with 4,4′‐diaminodiphenylsulfone and subjected to tests for thermal properties, plane strain fracture toughness (KIC), flexural properties, and solvent resistance measurements. The fracture surfaces were analyzed with SEM to elucidate the toughening mechanism. The properties of copolymer‐toughened epoxy resins were compared to those of samples modified by PES/CTBN blends, PES oligomer, or CTBN. The PES‐CTBN‐PES copolymer (20K) showed a KIC of 2.33 MPa m0.5 at 40 wt % loading while maintaining good flexural properties and chemical resistance. However, the epoxy resin modified with a CTBN/8K PES blend (2:1) exhibited lower KIC (1.82 MPa m0.5), lower flexural properties, and poorer thermal properties and solvent resistance compared to the 20K PES‐CTBN‐PES copolymer‐toughened samples. The high fracture toughness with the PES‐CTBN‐PES copolymer is believed to be due to the ductile fracture of the continuous PES‐rich phases, as well as the cavitation of the rubber‐rich phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1556–1565, 2002; DOI 10.1002/app.10390  相似文献   

15.
Abstract

An amino‐terminated oligoimide was prepared by the Michael addition reaction of ethylene bis‐maleimide (EBM) and 4,4′‐diamnio diphenyl‐sulfone (DDS) at an EBM:DDS molar ratio of 1:2. The poly(amide‐imide)s (PAI)s were prepared by condensation of this EBMDDS oligoimide with various aliphatic bisesters. The resultant PAIs were characterized by elemental analysis, IR spectral studies, and the number average molecular weight estimated by non‐aqueous conductometric titration and thermogravimetry. The curing reaction of an epoxy resin [a diglycidyl ether of bis‐phenol‐A (DGEBA)] with PAIs was monitored by differential scanning calorimetry (DSC). Glass‐ and carbon‐reinforced laminates of PAI‐epoxy resin were also prepared and characterized.  相似文献   

16.
Thermoplastic polyethersulfone (PES) modified multifunctional tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) and triglycidyl para‐aminophenol (TGAP) epoxy prepolymers cured with 4,4′‐diaminodiphenylsulfone (44DDS) were prepared using a continuous reactor method and their reaction‐induced phase separated morphologies and mechanical properties were measured and correlated with chemical compositions. 1H nuclear magnetic resonance (1H NMR) and near‐infrared spectroscopy (NIR) were used to quantify the chemical network formation. Atomic force microscopy (AFM) with nanomechanical mapping was employed to resolve the nanoscale phase‐separated morphologies. The extent of phase separation in cured networks and resultant domain sizes were determined to be controllable depending upon the multifunctional epoxy compositions. The results obtained from mechanical studies further indicated that tensile modulus was not largely affected by multifunctional epoxy compositions while fracture toughness increased with increase of TGAP content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44775.  相似文献   

17.
简要介绍了环氧树脂胶黏剂的特性,指出聚氨酯改性环氧树脂的主要目的是提高其韧性。分别论述了几种常用的聚氨酯增韧改性环氧树脂胶黏剂的方法,包括端胺基/端羟基/端异氰酸酯基/端环氧基聚氨酯预聚体增韧改性环氧树脂,聚氨酯环氧树脂接枝共聚改性环氧树脂以及聚氨酯互穿聚合物网络增韧环氧树脂,其中详细介绍了聚氨酯互穿聚合物网络增韧环氧树脂技术。同时,对国内聚氨酯改性环氧树脂胶黏剂的主要应用进行了介绍,并指出了我国目前聚氨酯改性环氧树脂胶黏剂的不足和发展方向。  相似文献   

18.
A poly(ether urethane)‐based cyanate ester resin (PEUCER) with a biphenyl polyether backbone obtained from polymeric 4,4′‐diphenylmethanediisocyanate, bisphenol A, polyether polyols of three different molecular weights, and cyanogen bromide was synthesized to obtain a polymer with better functional and physical properties, such as adhesion, flexibility, and thermal stability. The synthesis of the poly(ether urethane)‐based 4,4′‐(oxybiphenyl propane) cyanate ester involved three steps: the formation of the poly(ether urethane) NCO‐terminated prepolymer, the formation of the OH‐terminated poly (ether urethane) prepolymer (PEU–PP), and the esterification reaction of cyanate to produce PEUCER. PEUCER was cyclotrimerized to yield a triazine‐ring‐containing polymer, which possessed better adhesion at high temperatures and better impact resistance. PEU–PP and PEUCER were characterized with wet chemical analysis, spectral methods, and thermal methods. PEUCER showed better performance with respect to thermal and adhesion properties with a single‐part polyurethane lamination adhesive and also showed better performance as a toughening agent in a two‐part epoxy laminate system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Aromatic polyesters were prepared and used to improve the brittleness of bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane and o,o′‐diallyl bisphenol A (Matrimid 5292 A/B resin). The aromatic polyesters included PEPT [poly(ethylene phthalate‐co‐ethylene terephthalate)], with 50 mol % of terephthalate, PEPB [poly(ethylene phthalate‐co‐ethylene 4,4′‐biphenyl dicarboxylate)], with 50 mol % of 4,4′‐biphenyl dicarboxylate, and PEPN [poly(ethylene phthalate‐co‐ethylene 2,6‐naphthalene dicarboxylate)], with 50 mol % 2,6‐naphthalene dicarboxylate unit. The polyesters were effective modifiers for improving the brittleness of the bismaleimide resin. For example, inclusion of 15 wt % PEPT (MW = 9300) led to a 75% increase in fracture toughness, with retention in flexural properties and a slight loss of the glass‐transition temperature, compared with the mechanical and thermal properties of the unmodified cured bismaleimide resin. Microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism was assessed as it related to the morphological and dynamic viscoelastic behaviors of the modified bismaleimide resin system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2352–2367, 2001  相似文献   

20.
The fracture behavior of a bisphenol A diglycidylether (DGEBA) epoxy, Araldite F, modified using carboxyl‐terminated copolymer of butadiene and acrylonitrile (CTBN) rubber up to 30 wt%, is studied at various crosshead rates. Fracture toughness, KIC, measured using compact tension (CT) specimens, is significantly improved by adding rubber to the pure epoxy. Dynamic mechanical analysis (DMA) was applied to analyze dissolution behavior of the epoxy resin and rubber, and their effects on the fracture toughness and toughening mechanisms of the modified epoxies were investigated. Scanning electron microscopy (SEM) observation and DMA results show that epoxy resides in rubber‐rich domains and the structure of the rubber‐rich domains changes with variation of the rubber content. Existence of an optimum rubber content for toughening the epoxy resin is ascribed to coherent contributions from the epoxy‐residing dispersed rubber phase and the rubber‐dissolved epoxy continuous phase. No rubber cavitation in the fracture process is found, the absence of which is explained as a result of dissolution of the epoxy resin into the rubber phase domains, which has a negative effect on the improvement of fracture toughness of the materials. Plastic deformation banding at the front of precrack tip, formed as a result of stable crack propagation, is identified as the major toughening process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号