首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Considering biological nitrogen removal, the partial nitritation connected with the anaerobic ammonium oxidation (anammox) process is a promising alternative for nitrogen elimination at high loading rates. The objective of the present study was to evaluate the establishment and operation of a partial nitritation process in an airlift reactor with simultaneous removal of total organic carbon and suspended solids using swine wastewater. RESULTS: The partial nitritation reactor was inoculated with a nitrifying sludge at 2.1 gTSS L?1 and fed with an UASB reactor effluent. High organic carbon loading rates, above 2 kgTOC m?3 d?1 have been shown to be potential inhibitors of the partial nitritation process due to competition between autotrophic and heterotrophic bacteria. In this study, the partial nitritation process was established using undiluted swine wastewater, with HRT of 24 h, 1.84 mgO2 L?1 (SD = 0.41) DO, loading rate of 1.14 gTOC L?1 d?1 and 0.91 gN‐NH3 L?1 d?1 for more than 100 consecutive days. At the same time, the system proved to be an effective tool in TOC and TSS removal, reaching 84.9% (SD = 9.3) and 83.1% (SD = 0.1), respectively. CONCLUSION: This result enhances partial nitritation application as a technology for high load nitrogen converting, and allows the possibility of connection with anammox reactors. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Completely autotrophic nitrogen removal over nitrite (CANON) could decrease energy consumption and CO2 release compared with conventional nitration–denitrification. Trace NO2 addition could enhance the activities of aerobic and anaerobic ammonium oxidation. RESULTS: An aerated upflow sludge bed (AUSB) reactor inoculated simultaneously with aerobic and anaerobic ammonium oxidizing sludge was operated to cultivate granular sludge capable of carrying out CANON. The results showed that the efficiency and rate of total nitrogen (TN) removal reached 61% and 0.114 kgN, respectively (m?3 day?1) for DO = 0.5–0.6 mg L?1. Batch tests indicated that trace NO2 addition could increase the CANON activity of sludge. The TN removal rate and efficiency of the reactor was increased to 0.234 kgN m?3 day?1 and 63%, respectively, when the reactor was aerated with air containing 2.7–3.3 mmol m?3 NO2 and DO was at 0.5–0.8 mg L?1. CONCLUSIONS: Trace NO2 addition provides an alternative to increase the capacity of a CANON system at low DO concentration. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
A new membrane‐assisted hybrid bioreactor was developed to remove ammonia and organic matter. This system was composed of a hybrid circulating bed reactor (CBR) coupled in series to an ultrafiltration membrane module for biomass separation. The growth of biomass both in suspension and biofilms was promoted in the hybrid reactor. The system was operated for 103 days, during which a constant ammonia loading rate (ALR) was fed to the system. The COD/N‐NH4+ ratio was manipulated between 0 and 4, in order to study the effects of different organic matter concentrations on the nitrification capacity of the system. Experimental results have shown that it was feasible to operate with a membrane hybrid system attaining 99% chemical oxygen demand (COD) removal and ammonia conversion. The ALR was 0.92 kg N‐NH4+ m?3 d?1 and the organic loading rate (OLR) achieved up to 3.6 kg COD m?3 d?1. Also, the concentration of ammonia in the effluent was low, 1 mg N‐NH4+ dm?3. Specific activity determinations have shown that there was a certain degree of segregation of nitrifiers and heterotrophs between the two biomass phases in the system. Growth of the slow‐growing nitrifiers took place preferentially in the biofilm and the fast‐growing heterotrophs grew in suspension. This fact allowed the nitrifying activity in the biofilm be maintained around 0.8 g N g?1 protein d?1, regardless of the addition of organic matter in the influent. The specific nitrifying activity of suspended biomass varied between 0.3 and 0.4 g N g?1 VSS d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
BACKGROUND: This study was conducted to investigate the feasibility and performance of nitrogen removal through the complete autotrophic nitrogen removal over nitrite (CANON) process for saline wastewater in a continuous reactor, and to characterize microorganisms in the sludge from the reactor using DNA‐based techniques. RESULTS: The nitrogen removal experiment in the reactor was operated over five phases for 286 days treating a synthetic sewage of 1.2% salinity at 21–25 °C. At dissolved oxygen (DO) concentrations of 0.5–1.0 mg L?1 and in the presence of glucose, NO2? was accumulated, indicating the activity of ammonia‐oxidizing bacteria (AOB). At DO concentration of 0.5 mg L?1 without organic substrate, the anaerobic ammonium oxidation (Anammox) process was the major pathway responsible for nitrogen removal, with a total nitrogen removal of 70% and an ammonium conversion efficiency of 96%. A maximum ammonium removal rate of 0.57 kg‐N m?3 d?1 was achieved during the experimental period. The concentrations of AOB and Anammox bacteria were monitored over the operation of reactor using quantitative real‐time polymerase chain reaction (qRT‐PCR). CONCLUSION: In this study, autotrophic nitrogen removal process was achieved under salinity condition in a one‐reactor system. An over 100 fold increase of AOB was found due to the increased supply of ammonium at the beginning, then AOB concentration decreased temporarily in correspondence with the decreased DO, and the AOB resumed their concentration at the last phase. The Anammox bacteria abundance was about 150 fold higher than that at the beginning, indicating the successful enrichment of Anammox bacteria in the reactor. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
The capability of biological nutrient removal from wastewater of a novel laboratory‐scale twin fluidized‐bed bioreactor (TFBBR) was studied. The work showed approximately 96 % organic matter, 84 % nitrogen, and 12 % phosphorus removal efficiencies in the first three phases of the study at influent synthetic municipal wastewater (SMW) flow rates of 150, 190, and 240 L/d, with corresponding organic loading rates of 1.3, 1.7, and 2.3 kg COD m–3 d–1 and nitrogen loading rates of 0.14, 0.18 and 0.25 kg N m–3 d–1. The TFBBR effluent was characterized by <1.0 mg NH4‐N/L, <4.3 mg NO3‐N/L, <6 mg TN/L, <6 mg SBOD/L, and 6–10 mg VSS/L. For the three phases, biomass yields of 0.06, 0.066, and 0.071 g VSS/g COD were observed, respectively, which was a significant further reduction in yield compared to the liquid‐solid circulating fluidized‐bed bioreactor technology developed and patented by this research group, of 0.12–0.16 g VSS/g COD. The very low yield was due to a longer solid retention time of 72–108 d.  相似文献   

7.
In this study, a lab‐scale sequencing batch reactor (SBR) has been tested to remove chemical oxygen demand (COD) and NH4+‐N from the supernatant of anaerobic digestion of the organic fraction of municipal solid waste. This supernatant was characterized by a high ammonium concentration (1.1 g NH4+‐N L?1) and an important content of slowly biodegradable and/or recalcitrant COD (4.8 g total COD L?1). Optimum SBR operating sequence was reached when working with 3 cycles per day, 30 °C, SRT 12 days and HRT 3 days. During the time sequence, two aerobic/anoxic steps were performed to avoid alkalinity restrictions. Oxygen supply and working pH range were controlled to promote the nitrification over nitrite. Under steady state conditions, COD and nitrogen removal efficiencies of more than 65% and 98%, respectively, were achieved. A closed intermittent‐flow respirometer was used to characterize and model the SBR performance. The activated sludge model ASM1 was modified to describe the biological nitrogen removal over nitrite, including the inhibition of nitrification by unionized ammonia and nitrous acid concentrations, the pH dependency of both autotrophic and heterotrophic biomass, pH calculation and the oxygen supply and stripping of CO2 and NH3. Once calibrated by respirometry, the proposed model showed very good agreement between experimental and simulated data. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
The anaerobic digestion of alkaline black liquor from a cereal straw pulping mill was studied in batch (serum bottles) and continuous systems (up-flow anaerobic sludge blanket reactor—UASB). The batch digestion studies confirmed that lignin and related compounds (LRC) in the alkaline black liquor were the main inhibitory substances and could not be decomposed by anaerobic bacteria. At organic loading rates of 5–10 kg COD m?3 day?1, the UASB reactor achieved 50–60% COD removal efficiencies. Gas production was 2–3 dm3 per dm3 of alkaline black liquor. Two different sludge types were examined in the reactor: granular and cluster-like sludges. Sludge in a cluster, which involved many small granules and flocs, tended to form larger aggregates and possessed good settling ability.  相似文献   

9.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Landfill leachate is characterized by low biodegradable organic matter that presents difficulties for the complete biological nitrogen removal usually performed by conventional biological nitrification/denitrification processes. To achieve this, the anaerobic ammonium oxidation (anammox) process is a promising biological treatment. This paper presents an anammox start‐up and enrichment methodology for treating high nitrogen load wastewaters using sequencing batch reactor (SBR) technology. RESULTS: The methodology is based on the gradual increase of the nitrite‐to‐ammonium molar ratio in the influent (from 0.76 to 1.32 mole NO2?‐N mole?1NH4+‐N) and on the exponential increase of the nitrogen loading rate (NLR, from 0.01 to 1.60 kg N m?3 d?1). 60 days after start‐up, anammox organisms were identified by polymerase chain reaction (PCR) technique as Candidatus Brocadia anammoxidans. After one year of operation, NLR had reached a value of 1.60 kg N m?3 d?1 with a nitrogen (ammonium plus nitrite) removal efficiency of 99.7%. The anammox biomass activity was verified by nitrogen mass balances with 1.32 ± 0.05 mole of nitrite removed per mole of ammonium removed and 0.23 ± 0.05 mole of nitrate produced per mole of ammonium removed. Also, enrichment of anammox bacteria was quantified by fluorescence in situ hybridization (FISH) analysis as 85.0 ± 1.8%. CONCLUSIONS: This paper provides a methodology for the enrichment of the anammox biomass in a SBR to treat high nitrogen loaded wastewaters. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
A sequencing batch reactor (SBR) was used to investigate the performance and sludge characteristics of anammox process at moderate and low temperatures. The initial pH was 7.5 and hydraulic retention time (HRT) was 3 h. When temperature was 25-35 °C, nitrogen removal rate (NRR) fluctuated from 1.67 to 1.82 kg/m3·d. However, when temperature dropped to 15 °C, NRR suddenly decreased by 0.48 kg/m3·d. Larger activation energy was acquired at lower temperature, and it was difficult to achieve efficient nitrogen removal under low temperature. When temperature declined to 10 °C, ΔNO 2 ? -N/ΔNH 4 + -N and ΔNO 3 ? -N/ΔNH 4 + -N reached 1.02 and 0.27, respectively. Inhibition resulting from low temperature on anammox activity was recoverable, and the modified Boltzmann model was appropriate to analyze recovery feature of anammox process. Low temperature not only led to poor nitrogen removal, but also affected sludge size and feature.  相似文献   

12.
BACKGROUND: To validate the possibility of aerobic granulation at a lower organic loading rate (OLR) than 2 kg COD m?3 day?1 (GS 1) in a sequencing batch reactor (SBR), the formation, structure, and microbial community of granular sludge (GS) were investigated. RESULTS: The overall experimental process involved the following stages: acclimation, granulation, maturation, and stabilization. The optical microscopic showed the structural changes from fluffy activated sludge (AS) to GS and scanning electron microscope (SEM) examination revealed that GS 1 was irregular filamentous aggregates composed mainly of various filamentous species, while the aerobic granules cultivated at OLR 1.68–4.20 kg COD m?3 day?1 (GS 2) was mycelial pellets consisting of fungi and filamentous microorganisms. A Biolog Ecoplate analysis indicated that significant differences existed between the microbial community structure and the substrate's utilization of AS and different GS samples. CONCLUSION: GS 1 was achieved and different from GS 2 in the formation, structure, and microbial community. Aerobic granulation with low strength wastewater is of importance for the full‐scale application of this technology. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The feasibility of the expanded granular sludge bed (EGSB) system for the treatment of malting waste water under psychrophilic conditions was investigated by operating a pilot-scale 225·5 dm3 EGSB-reactor system in the temperature range from 13 to 20°C. The concentration of chemical oxygen demand (COD) in the malting waste water was between 282 and 1436 mg dm−3. The anaerobically biodegradable COD of the waste water was about 73%, as determined in the batch bioassays. During reactor operation at 16°C, the COD removal efficiencies averaged about 56%, at organic loading rates (OLR) ranging between 4·4 and 8·8 kg COD m−3 day−1 and a hydraulic retention time (HRT) of approximately 2·4 h. At 20°C, removal efficiencies were approximately 66% and 72%, respectively, at OLRs of 8·8 and 14·6 kg COD m−3 day−1, corresponding to HRTs of 2·4 and 1·5 h. The specific methanogenic activity with the sludge from the reactor, assessed on acetate and volatile fatty acids mixture as substrates, significantly increased (80%) in time, indicating an enrichment of methanogens and acetogens even at the low temperatures applied. These findings are of considerable practical importance because they indicate that anaerobic treatment of low strength waste waters at low temperature might become a feasible option. © 1997 SCI.  相似文献   

14.
Due to its intricate internal biological structure the process of anaerobic digestion is difficult to control. The aim of any applied process control is to maximize methane production and minimize the chemical oxygen demand of the effluent and surplus sludge production. Of special interest is the start‐up and adaptation phase of the bioreactor and the recovery of the biocoenose after a toxic event. It is shown that the anaerobic digestion of surplus sludge can be effectively modeled by means of a hierarchical system of neural networks and a prediction of biogas production and composition can be made several time‐steps in advance. Thus it was possible to optimally control the loading rate during the start‐up of a non‐adapted system and to recover an anaerobic reactor after a period of heavy organic overload. During the controlled period an optimal feeding profile that allowed a minimum loading rate of 6 kg COD m?3 d?1 to be maintained was found. Maximum loading rates higher than 12 kg COD m?3 d?1 were often reached without destabilizing the system. The control strategy resulted simultaneously in a high level of gas production of about 3 m3biogas m?3reactor and a methane content in the biogas of about 70%. To visualize the effects of the control strategy on the reactor's operational space the data were processed using a data‐mining program based on Kohonen Self‐Organizing Maps. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Aerobic granulation is a promising technology for the removal of nutrients in wastewater. Since research to date is mainly focused at laboratory scale, a pilot‐scale sequencing batch reactor (100 L) was operated to obtain granular sludge in aerobic conditions grown on acetate as organic carbon substrate. Selective pressure created by means of decreasing settling time and increasing organic loading rate (OLR) enhanced the formation of aerobic granular sludge. Granules appeared after 6 days and reached an average diameter around 3.5 mm. The settling velocity value should be higher than 11 m h?1 in order to remove flocculent biomass. The reactor treated OLRs varying between 2.5 and 6.0 g COD L?1 d?1 reaching removal efficiencies around 96%, which demonstrates the high activity and the ability of the system to withstand high OLR. Nevertheless, a rapid increase in the OLR produced a loss of biomass in the reactor due to breakage of the granules. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
The objective of this paper is to investigate COD removal efficiency of the coking-plant wastewater by applying the moving-bed biofilm sequencing batch reactor (MBBSBR). The operation is simple and 30% WD-F10-4 BioM™ were packed as carrier materials. It was found that the coking-plant wastewater could be effectively treated with 92.9% of COD removal efficiency at a low organic loading rate (OLR) of 0.449 kgCOD·m−3·d−1 The removal efficiency decreased gradually down to 70.9% when OLR increased to 2.628 kgCOD·m−3·d−1. The system has strong tolerance to organic shock loading in this experiment. The COD removal results in the blank experiments of biofilm and sludge showed that the attached biofilm has higher activity than suspended sludge and contributes about 60% to the COD removal. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

18.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
以实际高氮晚期渗滤液为研究对象,应用缺氧/厌氧UASB-A/O组合工艺重点研究有机物和氮的去除特性,同时考察了A/O系统内短程硝化实现途径及稳定方法。试验结果表明,该生化系统可实现有机物和氮的同步、深度去除。在原液COD平均为6537 mg·L-1,NH+4-N为2021 mg·L-1的条件下,系统最终出水分别为300 mg·L-1和15.6 mg·L-1,去除率分别为95.4%和99.2%。UASB反应器的平均COD负荷为6.5 kg COD·m-3·d-1,去除速率为5.3 kg COD·m-3·d-1。在单一UASB反应器内,发生了缺氧反硝化和厌氧产甲烷的双重生化反应,UASB反应器内获得了几乎100%的反硝化率。通过高游离氨(FA)和游离亚硝酸(FNA)的协同作用,使A/O反应器实现并维持了稳定的短程硝化,通过99%以上的亚硝化率实现高效的氨氮去除。  相似文献   

20.
Wastewaters generated by a factory processing marine products are characterized by high concentrations of organic compounds and salt constituents (>30 g dm?3). Biological treatment of these saline wastewaters in conventional systems usually results in low chemical oxygen demand (COD) removal efficiency, because of the plasmolysis of the organisms. In order to overcome this problem a specific flora was adapted to the wastewater from the fish‐processing industry by a gradual increase in salt concentrations. Biological treatment of this effluent was then studied in a continuous fixed biofilm reactor. Experiments were conducted at different organic loading rates (OLR), varying from 250 to 1000 mg COD dm?3 day?1. Under low OLR (250 mg COD dm?3 day?1), COD and total organic carbon (TOC) removal efficiencies were 92.5 and 95.4%, respectively. Thereafter, fluctuations in COD and TOC were observed during the experiment, provoked by the progressive increase of OLR and the nature of the wastewater introduced. High COD (87%) and TOC (99%) removal efficiencies were obtained at 1000 mg COD dm?3 day?1. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号