首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
2.
为提高钛合金的摩擦磨损和高温抗氧化性能,采用激光熔覆技术在Ti6Al4V(TC4)钛合金表面制备了近等原子比的AlCoCrFeMoVTi高熵合金(HEA)涂层。借助X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)等分析了涂层的物相组成和显微组织;利用HDX-1000维氏硬度仪测试了熔覆层显微硬度;通过UMT-3摩擦磨损试验机和GSL-1400X型管式电阻炉分别测试了HEA涂层的摩擦磨损性能和高温抗氧化性能。结果表明,HEA涂层主要由面心立方(fcc)、体心立方(bcc)二元共晶相组成;HEA涂层最高显微硬度HV0.2为10 990 MPa,是基体TC4的3.29倍;涂层摩擦系数为0.31,磨损体积为1.79×10~(-4)mm~3,分别为基体的59.62%和12.01%;在800℃恒温下氧化50h后,HEA涂层的氧化增重为1.49 mg,仅为基体的16.37%。激光熔覆高熵合金AlCoCrFeMoVTi涂层能显著改善Ti6Al4V钛合金的摩擦磨损和高温抗氧化性能。  相似文献   

3.
利用激光熔覆技术制备了FeCoCrNiCux(x=0,0.5,1)高熵合金涂层,系统地分析了不同Cu含量涂层的微观组织、摩擦性能与磨损机制。结果表明:制备的FeCoCrNiCux高熵合金均为单一FCC相固溶体,并存在Cr、Ni(x=0)和Cu(x=0.5,1)偏析。室温下,三种涂层的摩擦因数均略高于基材的;FeCoCrNiCu涂层的加工硬化作用和延展性的提升使得其磨损率相较基材有显著下降。600℃下,FeCoCrNiCu0.5和FeCoCrNiCu涂层的摩擦性能均有显著提升;FeCoCrNiCu0.5涂层形成了平整致密的氧化层使得涂层磨损率仅为1.29×10-4 mm3/N·m;FeCoCrNiCu涂层形成了由硬质氧化物和高韧性合金构成的机械混合层,使得涂层表现出较好的减摩耐磨性能,其摩擦因数仅为0.24。  相似文献   

4.
为了探究激光熔覆工艺对高熵合金组织和性能的影响,使用激光熔覆技术在Q235基材表面制备不同熔覆工艺下的高熵合金涂层. 利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪等对高熵合金涂层进行显微组织形貌的观察及物相分析;利用显微硬度计、摩擦磨损试验机对涂层的硬度及耐磨性进行研究. 结果表明,宏观形貌上,扫描速度一定时,激光功率增大,涂层宽度增加,涂层表面更加平整; 激光功率一定时,扫描速度增加,熔覆层的宽度减小,相结构主要由体心立方(BCC)和面心立方(FCC)组成,扫描速度的增大或激光功率的降低,涂层中的晶粒变细小,且部分区域的胞状晶有向树枝晶生长的趋势,涂层硬度明显高于基材,最高可以达到553 HV,耐磨性要优于基体.  相似文献   

5.
用等离子熔覆技术在Q235钢上制备了CoCrFeMnNiCx(x=0, 0.05, 0.1, 0.2,x为摩尔分数)高熵合金熔覆层,并研究了熔覆层的合金成分,显微组织、相结构以及显微硬度。结果表明: C0、C0.05、C0.1和C0.2合金熔覆层的显微组织均为树枝晶结构,其中,C0合金熔覆层只形成了简单的面心立方相,其晶格常数为0.359 7 nm;加入C后,合金熔覆层仍以简单面心立方为主,只是晶格常数有所增加,分别为0.360 2(C0.05)、0.360 3(C0.1)和0.361 8(C0.2) nm;同时有少量Cr7C3生成,且随着C含量的增加,Cr7C3的形态由棒条状变为多边形颗粒状。由于少量的C元素在熔覆层中既可以作为固溶元素起到间隙固溶强化效果,也可与Cr元素形成Cr7C3起到第二相弥散强化作用,所以随含C量的增加,熔覆层显微硬度呈增大的趋势,当C的摩尔比为0.2时,熔覆层硬度达到354.7 HV0.5。  相似文献   

6.
利用激光熔覆技术在AISI 304不锈钢表面制备了AlCoCrFeNiSix(x=0.1,0.2,0.3,0.4,0.5)高熵合金涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、透射电子显微镜(TEM)、维氏硬度计和电化学工作站等,分析了Si元素对AlCoCrFeNiSix高熵合金涂层微观组织和性能的影响。结果表明:AlCoCrFeNiSix高熵合金涂层由体心立方(BCC)固溶体晶粒构成。随着Si元素含量的增加,Si元素置换固溶使晶格收缩,晶粒逐步细化,纳米尺度球状AlNi相在晶粒内脱溶,少量的Cr23C6碳化物沿晶界析出。微观组织的演化导致涂层的显微硬度升高,最大硬度达到848.1 HV0.3。AlCoCrFeNiSix高熵合金涂层的热力学腐蚀倾向和均匀腐蚀速率均低于基材AISI 304不锈钢。Si元素的掺杂提高了钝化膜的修复能力和稳定性,使腐蚀机制从自催化发展的点蚀转变为晶间腐蚀。  相似文献   

7.
利用激光熔覆技术制备的高熵合金涂层已成为一种新兴的绿色清洁耐腐蚀涂层.为了最大程度发挥高熵合金涂层的耐腐蚀防护性能,需要探究激光熔覆高熵合金涂层耐腐蚀性能的影响因素及影响机理.首先阐述了高熵合金理论以及利用激光熔覆技术制备高熵合金涂层的优势,总结了高熵合金激光熔覆涂层优异耐腐蚀特性及耐腐蚀强化机理.重点综述了高熵合金元素组成、激光熔覆工艺参数、涂层后处理工艺以及服役温度4个因素,对高熵合金激光熔覆涂层耐腐蚀性能的影响规律与影响机理.高熵合金中适当添加Ni、Al、Ti等元素,在一定程度上可以提高涂层的耐腐蚀性,但是随着元素含量的进一步增加,由于高熵合金涂层的物相组成改变、晶格畸变严重、元素偏析加剧,可能导致涂层的耐腐蚀性能降低.适宜的激光加工参数可以使涂层具有较好的耐腐蚀性,原因在于涂层的缺陷较少、组织细密均匀.退火、激光重熔、超声冲击处理等涂层后处理工艺,通过改变高熵合金涂层的物相组成以及微观组织特征,来提高其耐腐蚀性.激光熔覆高熵合金涂层的服役环境温度越高,则腐蚀速率越快.最后,对激光熔覆高熵合金涂层的耐腐蚀性能强化方法进行了总结与展望.  相似文献   

8.
采用额定功率为3 kW的Nd:YAG固体激光器在45钢表面激光熔覆制备了FeCoNiCrAl高熵合金,通过光学显微镜(OM)、扫描电镜、显微硬度计和电化学工作站等研究了试样的组织、成分、硬度和耐腐蚀性能。结果表明:由于激光能量空间的非均匀分布及熔池与基体之间换热等的非均匀性,激光熔覆高熵合金与基体的交界面为波浪形;由于过冷度的差异,在熔覆区域靠近中心的组织为等轴晶,熔覆层与基体交界的组织为柱状枝晶;由于激光熔覆过程的快速加热和冷却综合影响,完全相变区组织为马氏体与残留奥氏体;由于激光熔覆晶粒细化和Al元素引起的晶格畸变等综合影响,熔覆区域硬度是基体的2~3倍。  相似文献   

9.
采用激光熔覆的方法制备AlCoCrFeNiMox高熵合金涂层。研究Mo元素含量对涂层微观结构、硬度及耐腐蚀性的影响。结果表明,随着Mo含量的增加,微观组织从富(Al, Ni)的体心立方(bcc)相和富(Mo-Cr-Fe)的σ相,转变为富(Fe, Ni)的bcc相、富(Mo-Cr-Fe)的σ相、富(Al-Fe-Mo)的σ相与少量AlN相。此外,涂层的显微硬度(HV1)从6154.4 MPa增加到10652.6 MPa。随着Mo含量的添加,涂层在3.5%(质量分数)氯化钠溶液中的自腐蚀电位升高,当Mo含量为x=1.0时,涂层的耐腐蚀性能最好。  相似文献   

10.
目的 通过对激光熔覆CoCrFeNiW0.6高熵合金涂层进行退火处理,使涂层性能得到进一步提高。方法 采用RFL–C1000光纤激光器在45钢表面制备CoCrFeNiW0.6高熵合金涂层,通过SXL–1200管式电阻炉在不同温度下(600、800、1 000 ℃)对高熵合金涂层进行退火处理,保温时间为2 h,冷却方式为随炉冷却。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机等对熔覆层的微观组织、显微硬度和摩擦磨损性能进行分析和测试。结果 CoCrFeNiW0.6高熵合金涂层由FCC相和μ相(Fe7W6)组成,经过不同温度退火处理后,涂层未析出新的相,μ相衍射峰强度呈先减小后增大的趋势;涂层组织经高温退火(800 ℃、1 000 ℃,2 h)后发生了明显的改变,经800 ℃/2 h退火处理后,枝晶间析出了大量μ相沉淀,经1 000 ℃/2 h退火处理后晶界开始出现断裂分解,晶粒内部和晶界部位析出了大量的富W颗粒相(μ 相)。经1 000 ℃/2 h退火处理后,熔覆层具有较高的平均显微硬度,为475.68HV0.3,相较于未经退火处理的熔覆层,其硬度提高了约45%;经600 ℃/2 h退火处理后,涂层的平均摩擦因数最低,约为0.226,磨损量最小,与未经退火处理的涂层相比,其磨损量降低了约28%。退火温度的升高并未使磨损机制发生明显改变,主要为磨粒磨损。结论 高温退火处理可以促进μ相的生成;经退火后,CoCrFeNiW0.6高熵合金涂层的硬度得到显著提高,改善了涂层的摩擦磨损性能,强化机制为固溶强化和第二相强化。  相似文献   

11.
目的 研究超声振动对高熵合金涂层的裂纹抑制机理与力学性能影响。方法 采用自主设计的超声振动平台开展试验。使用激光共聚焦显微镜观察高熵合金涂层的截面形貌,对比超声添加前后裂纹的数量以及分布情况。采用扫描电镜、X射线衍射仪等测试设备,探究添加超声前后涂层的微观组织转变、元素分布趋势与晶粒尺寸等。借助显微硬度仪与往复摩擦磨损试验机研究涂层的显微硬度与耐磨性。结果 超声振动作用下,熔池的润湿角发生变化,截面由半圆状变为椭圆状。超声振动显著细化涂层的晶粒,破碎的柱状晶增加了凝固晶核的数量,同时促进了FCC相在晶界处的析出。FCC析出相形成“网状”结构,增强了晶界处吸收应力的能力,有助于抑制涂层中裂纹的扩展。涂层显微硬度由503HV0.5提升至526HV0.5,室温摩擦因数由0.669下降至0.586,摩擦曲线更加平稳。添加超声振动后,涂层的磨损机制为磨粒磨损与氧化磨损。结论 超声振动产生的空化效应与声流效应减小了熔池的温度梯度,细化了晶粒,抑制了裂纹在晶界处扩展。添加超声振动后,涂层的力学性能与摩擦性能得到提升。  相似文献   

12.
针对激光熔覆高熵合金涂层的成分设计已有较多探究,但激光工艺参数对涂层结构与性能的影响尚缺乏系统研究。采用激光熔覆技术在316L不锈钢基体表面制备Fe Co Ni Cr高熵合金涂层,系统探究激光功率(1.2~2.0 kW)对Fe Co Ni Cr高熵合金涂层的组织结构以及耐腐蚀性能的影响规律。不同激光功率制备的Fe Co Ni Cr涂层均由典型的单一面心立方结构(FCC)组成,但随着激光功率的增大,涂层逐渐出现择优取向。Fe Co Ni Cr涂层呈现典型的双层组织结构特征,底部为柱状晶,顶部为等轴晶,但随着激光功率增加,顶部等轴晶逐渐向柱状晶转变。随着激光功率的增加,Fe Co Ni Cr涂层混合熵值逐渐下降。Fe Co Ni Cr涂层具有优异的耐腐蚀性能,但随激光功率的增加而逐渐减弱。其中,当功率为1.2 kW时,涂层的自腐蚀电流密度最小,自腐蚀电压最大且涂层表面无腐蚀坑,具有最佳的耐腐蚀性能,优于316L基体以及Stellite6和Ni60等常规激光熔覆涂层。通过优化激光功率获得具有良好耐腐蚀性能的激光熔覆Fe Co Ni Cr高熵合金涂层,可对该类涂层的开发、制备和应用提供一定的理论指导和技术支持。  相似文献   

13.
激光熔敷Ni基合金层的高温干摩擦磨损性能研究   总被引:5,自引:1,他引:4  
利用CO2连续激光器,对耐热铸铁表面进行了Ni基WC、Ni基WC中加入少量稀土元素CeO2等合金粉末的激光熔敷,研究了不同成分激光熔敷层的高温硬度,高温干磨磨损性能,对摩擦磨损后的表面形貌进行了分析研究,试验结果表明,Ni21+20%WC+0.5%CeO2熔么的高温性能较好。  相似文献   

14.
激光熔覆镍基合金的耐磨耐蚀性研究   总被引:4,自引:1,他引:4  
用激光熔覆和火焰重熔方法在 35CrMo调质钢表面分别熔覆上一层Ni45、Ni35合金。用电化学方法和应力腐蚀试验测定了熔覆层耐蚀性。试验结果表明 ,激光熔覆层组织的耐磨性和抗腐蚀性较火焰重熔后组织的有很大提高。其中激光熔覆Ni45粉末的熔覆层组织的耐磨、耐蚀性最好  相似文献   

15.
高熵合金被视为是近年来合金化理论的一次创新,打破了传统合金以一种或两种金属元素为主元的设计理念,将合金设计体系扩展到以五种及以上元素为主元的领域,由于能够组成高熵合金的元素种类繁多且含量可调,所以具有巨大的开发潜力。 激光熔覆技术作为一种先进的新型材料表面改性技术与装备维修技术,与高熵合金结合,可为该合金材料的应用开辟出新的空间。 通过对现有研究梳理,归纳总结激光熔覆高熵合金涂层的耐腐蚀性能、硬度与摩擦磨损性能以及抗高温氧化性能的性能强化机理;概括分析常见高熵合金的组成元素及其含量变化,对激光熔覆技术制备合金涂层组织结构和性能的影响,为高熵合金涂层组元的选取提供借鉴参考。 最后指出激光熔覆高熵合金涂层在当前研究中的不足与仍需深入研究的问题,展望了高熵合金的应用前景与未来的研究方向。 系统梳理 Al、Ti、Nb、Mo、Ni、Si、B、C 等合金化元素对激光熔覆技术制备高熵合金涂层组织结构和性能的影响规律和作用效果,为激光熔覆高熵合金涂层的合金分成设计提供理论指导。  相似文献   

16.
为探究Cr元素对高熵合金涂层组织结构和性能的影响,在45钢基体上用激光熔覆方法制备了FeCoCrxNiB高熵合金涂层,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度和耐磨测试等方法研究了Cr含量对FeCoCrxNiB激光熔覆高熵合金涂层组织结构、硬度和耐磨性能的影响。结果表明:熔覆态高熵合金的组织均由先共晶M2B相和共晶组织(面心立方结构相(FCC)+M2B相)组成。随着Cr含量的增加,共晶组织含量增多,M2B相减少,先共晶硼化物形态呈现不规则颗粒状到树枝状再到条块状的变化,共晶组织形貌由蜂窝状向片层状转变。涂层平均硬度随着Cr含量增加逐渐降低,FeCoCr0.5NiB涂层平均硬度最高为860HV0.2。涂层的耐磨性能与硬度呈正相关关系,即FeCoCr0.5NiB涂层耐磨性最高,FeCoCr3NiB涂层耐磨性最低。  相似文献   

17.
宋鹏芳  姜芙林  王玉玲  王冉 《表面技术》2021,50(1):242-252, 286
激光熔覆具有加热和冷却速度快、稀释度低(<5%)、热影响区小以及可以对表面性质进行精准调整等优点,是当今工业应用较为广泛的表面改性技术之一.利用激光熔覆技术制备高熵合金涂层,既能保证涂层具有简单的相结构和优异的性能,又可使涂层与基体之间获得良好的冶金结合.主要对激光熔覆制备高熵合金涂层的设计准则、性能及提高机理、凝固行为以及数值模拟的研究进行阐述.首先从设计理论方面对高熵合金进行概念阐述,由熵和吉布斯自由能可知,通过增加主元(至少5个)和位形熵来设计元素组成,通过吉布斯自由能控制相的稳定性.其次,对涂层的性能提高机理分类总结,其中高熵合金的四大效应与激光熔覆快冷快热的特点相结合是涂层性能提高的主要原因.此外,还阐述了激光熔覆过程中熔池的凝固行为,包括凝固过程中的晶粒生长方式和液相分离现象,以及其他因素引起的凝固行为变化.之后,对粉末流动特性、熔池温度场和熔覆层性能的数值模拟以及这些模型的缺陷进行综述与分析.最后,总结与展望激光熔覆制备高熵合金涂层研究的发展前景与应用方向.  相似文献   

18.
贾彦军  陈瀚宁  张家奇  雷剑波 《表面技术》2022,51(12):350-357, 370
目的 解决Q235钢材料在实际应用中由于磨损、腐蚀导致使用寿命缩短问题,提升Q235钢表面的硬度、耐磨性和耐蚀性。方法 利用激光熔化沉积技术在Q235钢表面制备无裂纹CoCrNiNbW高熵合金涂层。采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其微观组织结构、元素分布和物相成分;采用显微硬度计、试块-试环摩擦磨损试验机分别测试高熵合金涂层和Q235钢的显微硬度和耐磨性能,研究涂层的强化机制和磨损机理;采用电化学工作站测试分析高熵合金涂层和Q235钢的电化学腐蚀行为,研究涂层的耐蚀性和腐蚀机制。结果 CoCrNiNbW高熵合金涂层的微观组织主要由等轴晶组成,涂层中部和底部存在未熔化Nb和W颗粒,起强化相作用;主要物相由富含Co、Ni的FCC相及富含Nb的BCC相组成;高熵合金涂层的平均显微硬度为800HV0.2,约为基材的4倍;涂层的磨损机制以磨粒磨损为主,磨损率为2.315´ 10–5 g.m–1,约为基材的1/5;在质量分数3.5%的NaCl溶液中,高熵合金涂层具有更好的耐腐蚀性,腐蚀电阻约为基材的8倍。结论 高熵合金涂层的显微硬度、耐磨性和耐腐蚀性较Q235钢基材有很大提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号