首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of covalent bonds between silanols in copolymer and those in silica prevents organic–inorganic phase separation. Two series of hybrid composite materials, poly(vinyl acetate‐co‐vinyl trimethoxysilane)/TEOS and poly[vinyl acetate‐co‐3‐(trimethoxysilyl)propyl methacrylate]/TEOS, were fabricated using a modified sol‐gel process. The hybrids were transparent. Two kinds of silane coupling agents, vinyl trimethoxysilane (VTS) and 3‐(trimethoxysilyl)propyl methacrylate (γ‐MPS), were used to prevent macrophase separation through formation of covalent bonds. Thermal analysis showed that γ‐MPS was more effective than VTS for the formation of covalent bonds. Enhancement of thermal stability of the hybrids was investigated by thermogravimetric analysis. Photomicrographs of scanning electron microscopy and images of atomic force microscopy indicated that inorganic silica particles were homogeneously dispersed in less than 50 nm in organic matrix. The morphological properties of hybrids were strongly dependent on the organic–inorganic composition. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2310–2318, 2001  相似文献   

2.
New graft copolymers with side polysiloxane chains were synthesized by sol–gel reaction of acid‐catalyzed hydrolysis of tetraethyl orthosilicate in the presence of poly(vinyl butyral). The grafting is realized by exchange reaction of the alkoxyl moieties in siloxane and acetal groups. When the reaction is carried out in non‐hydroxylic solvent (1,1‐dimethoxyethane) inter‐etherification with participation of the residual hydroxyl groups of poly(vinyl butyral) is also important. The copolymers obtained contain free silanol groups which are active in complexing with polymeric bases by hydrogen bonds, with formation of new composites. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
In the presence of 3‐aminopropyltriethoxysilane (APTES), the transparent and yellowish poly(methyl acrylate‐co‐itaconic anhydride)/TiO2 [P(MA‐co‐Itn)/TiO2] hybrid materials were prepared from the copolymer of methyl acrylate and itaconic anhydride [P(MA‐co‐Itn)] and tetrabutyl titanate (TBT) via a sol–gel process. At first, the triethoxysilane groups were incorporated into the copolymer P(MA‐co‐Itn) as pendant side chains by the aminolytic reaction between the itaconic anhydride units of the copolymer and the amino group of 3‐aminopropyltriethoxysilane (APTES), and then the covalent bonds between the organic and inorganic phases were introduced by the hydrolysis and polycondensation of the triethoxysilane groups on the copolymer with TBT. FTIR analysis proved the existence of the covalent bonds. The influences of APTES on glass transition and morphology of the hybrid materials was studied by differential scanning calorimetry, scanning electron microscope, and atomic force microscope. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1763–1768, 2000  相似文献   

4.
A new type of inorganic‐polymer hybrid materials of epoxy/silica‐titania had been prepared by incorporating grafted epoxy, which had been synthesized by epoxy and tetraethoxysilane (TEOS), with highly reactive TEOS and tetrabutyltitanate (TBT) by using the in situ sol–gel process. The grafted epoxy was confirmed by Fourier transform infrared spectroscopy (FT‐IR) and 1H‐NMR spectroscopic technique. Results of FT‐IR spectroscopy and atomic force microscopy (AFM) demonstrated that epoxy chains have been covalently bonded to the surface of the SiO2‐TiO2 particles. The particles size of SiO2‐TiO2 are about 20–50 nm, as characterized by AFM. The experimental results showed that the glass‐transition temperatures and the modulus of the modified systems were higher than that of the unmodified system, and the impact strength was enhanced by two to three times compared with that of the neat epoxy. The morphological structure of impact fracture surface and the surface of the hybrid materials were observed by scanning electron microscopy and AFM, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1075–1081, 2006  相似文献   

5.
Polyimide–silica (PI–SiO2) hybrids with a nanostructure was obtained using the nonaqueous sol–gel process by polycondensation of phenyltriethoxysilane in a polyamic acid solution. Self‐catalyzed hydrolysis of phenyl‐substituted akoxysilane and modification on the polyimide structure are applied and result in highly compatible PI–SiO2 hybrids. Transparent PI–SiO2 with a high silica content of about 45% was thus obtained. The prepared PI–SiO2 films were characterized by infrared spectrometry, 29Si‐NMR, thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. These characterizations showed the silica influence on the properties of the hybrid. The thermal expansion coefficient of the PI–SiO2 and the temperature correlation were also established for probing the potential for application. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1609–1618, 2000  相似文献   

6.
A sol–gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona‐resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film. Especially, the hybrid film with 15 wt % of Al2O3 content exhibited obviously enhanced corona‐resistance property, which was explained by the formation of compact Al2O3 network in hybrid film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Organosoluble polyimide/silica hybrid materials were prepared using the sol–gel process. The organosoluble polyimide was based on pyromellitic anhydride (PMDA) and 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane (MMDA). The silica particle size in the hybrid is increased from 100–200 nm for the hybrid containing 5 wt % silica to 1–2 µm for the hybrid containing 20 wt % silica. The strength and the toughness of the hybrids are improved simultaneously when the silica content is below 10 wt %. As the silica content is increased, the glass transition temperature (Tg) of the hybrids is increased slightly. The thermal stability of the hybrids is improved obviously and their coefficients of thermal expansion are reduced. The hybrids are soluble in strong polar aprotic organic solvents when the silica content is below 5 wt %. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2977–2984, 1999  相似文献   

8.
The Hansen solubility parameters (HSPs ) of two ethylene–vinyl acetate (EVA ) copolymers (with 18 and 33 wt% of vinyl acetate) and their corresponding homopolymers (polyethylene, PE , and poly(vinyl acetate), PVAc ) have been studied at various temperatures, employing the previously obtained Flory–Huggins parameters. From these latter values, a procedure based on the Hansen solubility spheres theory was employed to determine the HSPs , as well as the radius of interaction. The procedure was validated with literature data, with deviations of around 3%. The HSP values (dispersion, polar and association terms, respectively, all in MPa1 /2) at 333.15 K are 14.84, ?3.88 and 1.78 for PE , 17.65, ?1.24 and 2.76 for EVA410 (with 18 wt% of vinyl acetate), 17.52, 0.15 and 3.61 for EVA460 (with 33 wt% of vinyl acetate) and 19.45, 10.59 and 5.76 for PVAc . The main characteristic of the obtained HSP values is that the high polar term of PVAc tends to increase the solubility character of the pure PE , and thus the EVA copolymers, allowing them to solubilize dispersion and polar compounds. Finally, it was also demonstrated that it is possible to predict the HSPs of EVA copolymers using the vinyl acetate content and the HSPs of pure PE and PVAc as input data. © 2017 Society of Chemical Industry  相似文献   

9.
Radiation effects on poly(propylene)/ethylene–vinyl acetate copolymer (PP/EVA) blends are discussed. Increasing the EVA content enhanced the crosslinking effect of radiation in PP/EVA blends. This effect was significant when the EVA content was ≥50% in PP/EVA blends that were exposed to γ‐ray irradiation in air. This phenomenon is discussed in relation to the compatibility, morphology, and thermal properties of PP/EVA blends. The results indicate that the effect is dependent on the compatibility, the increase in the amorphous region content, and the EVA content in PP/EVA blends. The possible mechanism of radiation crosslinking or degradation in irradiated PP/EVA blends was studied quantitatively by a novel method, a “step analysis” process, and thermal gravimetric analysis. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3420–3424, 2002  相似文献   

10.
Hybrids based on cellulose acetate (CA) and SiO2 were prepared by hydrolysis of tetraethoxysilane (TEOS). More rigid films were obtained with an inorganic phase incorporation. The thermal stability of the hybrids was similar to pure CA. Composite membranes were prepared by casting of CA/TEOS mixtures onto a poly(vinylidene fluoride) support. The water permeation decreased with the incorporation of the inorganic phase. Hybrid membranes were able to retain solutes with a molar mass of ?9000 g/mol (?98% retention). Hybrids were submitted to biodegradation tests. The presence of the inorganic phase did not inhibit the growth of Thricoderma harzianum fungi. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2196–2205, 2002  相似文献   

11.
Ethylene‐vinyl acetate (EVA) nanocomposites with enhanced flame retardance were prepared by the sol–gel process in the melt. Two EVAs with different vinyl acetate (VA) contents and aluminium isopropoxide were used as organic and inorganic phases. The nanocomposites were prepared in a batch mixer under constant processing conditions and were analysed by several characterization techniques. Aluminium isopropoxide presented low activation energy, which allows the synthesis of the nanoparticles without a post step treatment. The reaction mechanism is proposed. Nanocomposites with smaller and well dispersed metal nanoparticles were produced with an EVA with higher VA content. EVA nanocomposites achieve the requirements for 94 V‐0 classification. © 2013 Society of Chemical Industry  相似文献   

12.
ABSTRACT

In this study, polythiophene and poly(dimethylsiloxane)/poly(vinyl acetate)/polythiophene ternary composites were synthesized. The new ternary composites obtained in powder and film forms were characterized using various techniques. Magnetic properties of all the materials were analyzed by Gouy balance measurements, and it was found that their conductivity mechanism is of polaron nature. The surface structure, surface roughness, and thermal properties of the prepared samples were identified by Scanning Electron Microscopy, Atomic Force Microscopy, and Thermogravimetric Analysis, respectively. The tensile-tension test studies were performed for mechanical properties. The PDMS/PVAc/PT (6%) composite demonstrated about 50% of the maximum strain value (%) of vulcanized natural rubber.  相似文献   

13.
Polyimide (PI) materials with a low coefficient of thermal expansion (CTE) while still retaining high strength and toughness are desirable in various applications. In this study a sol–gel process was used to incorporate silica into homopolyimides and copolyimides with highly rigid structures in an attempt to pursue this aim. A number of highly rigid monomers were used, including pyromellitic dianhydride (PMDA), p‐phenylene diamine (PPA), m‐phenylene diamine (MPA), benzidine, 2,4‐diaminotoluene, and o‐toluidine. No homopolyimide flexible films were obtained. However, it was possible to obtain flexible films from the copolyimides. Therefore, a copolyimide based on PPA, MPA, and PMDA (PPA/MPA = 2/1 mol) was then chosen as the matrix to prepare the PI/silica hybrids. Flexible films were obtained when the silica content was below 40 wt %. The hybrid films possessed low in‐plane CTEs ranging from 14.9 to 31.1 ppm with the decrease of the silica content. The copolyimide film was strengthened and toughened with the introduction of an appropriate amount of silica. The thermal stability and the Young's modulus of the hybrid films increased with the increase of the silica content. The silica particle size was assessed by scanning electron microscopy and was about 100 nm for the hybrids containing 10 and 20 wt % silica and 200–500 nm for the hybrids containing 30 and 40 wt % silica. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 794–800, 2001  相似文献   

14.
Poly(butylene adipate‐co‐terephthalate) (PBAT) composites containing silver‐silica (Ag‐SiO2) were prepared using an in‐situ sol–gel process. Maleic anhydride‐grafted PBAT (PBAT‐g‐MA) and multihydroxyl‐functionalized Ag‐SiO2 were used to improve the compatibility and dispersibility of Ag‐SiO2 within the PBAT matrix. The composites were characterized morphologically using transmission electron microscopy and chemically using Fourier transform infrared spectrometry. The existence of Ag‐SiO2 nanoparticles on the substrate was confirmed by the ultraviolet–visible absorption spectra. The antibacterial and antistatic properties of the composites were evaluated whether SiO2 enhanced the electrical conductivity was tested as well as whether Ag enhanced the antibacterial activity of the PBAT‐g‐MA/SiO2 or PBAT/SiO2 composites. The PBAT‐g‐MA/SiO2 or PBAT/SiO2 composite that contained Ag had better antibacterial activity (more than 1.3‐fold). The functionalized PBAT‐g‐MA/Ag‐SiO2 composite can markedly enhanced antibacterial and antistatic properties due to the carboxyl groups of maleic anhydride, which acted as coordination sites for the Ag‐SiO2 phase, allowing the formation of stronger chemical bonds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A series of sol–gel‐derived organic–inorganic hybrid materials that comprise organic poly(methyl methacrylate) (PMMA) and inorganic silica (SiO2) was successfully prepared using aniline as an organic base catalyst to catalyze the sol–gel reactions of tetraethylorthosilicate (TEOS). Aniline was adopted not only as a catalyst but also as a dispersing agent during the preparation of the hybrid materials. The as‐prepared hybrid materials were then characterized using transmission electron microscopy, SEM/energy dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy. The characteristic temperatures (including Td and Tg) of the hybrid materials slightly exceeded those of neat PMMA, as revealed from thermogravimetric analysis and differential scanning calorimetry evaluations. Studies of the protection against corrosion demonstrated that the hybrid coatings all improved the protection performance on cold‐rolled steel coupons relative to that of neat PMMA coatings, according to measurements of electrochemical corrosion parameters. Additionally, incorporating silica particles into the polymer may effectively reduce the gas permeability of the polymer membrane. Reducing the size of silica particles (at the same silica feeding) further improved the gas barrier property. Optical clarity studies indicated that introducing silica particles into the PMMA matrix may slightly reduce the optical clarity of the films/membranes, as determined by UV‐visible transmission spectroscopy. The contact angle of H2O of the hybrid films increased with the amount of aniline. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

16.
The relationships between the properties and structure are discussed for poly(vinyl alcohol)(PVA)/silica composites prepared through the sol‐gel process. The composites became stiff and brittle with increasing the silica content. The properties of the composites were changed drastically at around the composition of PVA/silica = 70/30 wt %. For example, there was no large change in the Young's modulus above 30 wt % of silica content (Pure PVA: 31.8 MPa, silica 30%: 52.6 MPa, silica 50%: 55.2 MPa). Consequently, it was considered that the three‐dimensional network structure of silica could be formed in the composite with more than 30 wt % of silica in PVA. From this behavior, it could be considered that the crystal growth of PVA was remarkably inhibited by silica network. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 133–138, 1999  相似文献   

17.
The sol–gel process has been frequently employed for preparation of high performance silica/polymer composites. In this paper, novel sol–gel precursor triethoxysilane‐terminated poly(urethane‐imide) (PUI‐Si), combining the advantages of polyurethane (PU) and polyimide, was synthesized and characterized. Then PUI‐Si was incorporated into the epoxy resin matrix to prepare a series of EP/PUI‐Si organic‐inorganic hybrids through an in situ sol–gel process and crosslinking reactions. The thermal stability of EP/PUI‐Si hybrids was evaluated by thermogravimetric analysis and the results show that the PUI‐Si could significantly improve the thermal properties of epoxy resin. The initial decomposition temperature of composites with 50 wt% PUI‐Si reached 347.1 °C, 157.3 °C higher than that of neat epoxy resin. Furthermore, the tensile strength and breaking elongation can also be clearly improved by adding a suitable amount of PUI‐Si. Similarly, the water contact angle increased to 97.4° with 70 wt% PUI‐Si, showing a hydrophobic surface. The morphology was investigated by transmission electron microscopy and the results reveal that the silica particles are smaller than 20 nm and have a strong interaction with the epoxy resin matrix, resulting in the above‐mentioned high performance properties. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic–inorganic nanocomposites through a sol–gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 446–454, 2002  相似文献   

19.
Hydrogels made of polyvinyl alcohol–vinyl acetate and its blends with water soluble polymer were studied in terms of swelling behavior, microstructure, and dynamic mechanical properties. Hydrogels prepared by blending polyvinyl alcohol–vinyl acetate with either polyacrylic acid or poly(4‐vinyl pyridine) exhibited a strong pH dependency. When poly(vinyl pyrrolidone) was used for blending, an unusual pH dependency was observed. An increase in the equilibrium water content in all systems resulted in an increase in the freezable water as determined by DSC. Critical point drying led to a striated surface on polyacrylic acid–polyvinyl alcohol–vinyl acetate hydrogels, whereas a porous structure was observed on the freeze‐dried poly(vinyl pyrrolidone)–polyvinyl alcohol–vinyl acetate gels. Hydrogels with elevated storage modulus were obtained when either polyvinyl alcohol–vinyl acetate alone or polyacrylic acid–polyvinyl alcohol–vinyl acetate blends were thermally treated at high temperatures (i.e., 150°C). Low storage modulus was observed for both poly(vinyl pyrrolidone) and poly(4‐vinyl pyridine)‐containing hydrogels. Temperature dependency of storage modulus from 20 to 60°C was observed only for poly(4‐vinyl pyridine)–polyvinyl alcohol–vinyl acetate hydrogels. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3578–3590, 2001  相似文献   

20.
Poly(methyl methacrylate–maleic anhydride) [P(MMA–MAn)] with active groups, anhydrides, was synthesized by radical copolymerization. Using P(MMA–MAn) as a basic polymer, the P(MMA–MAn)/SiO2 hybrid materials were obtained by a sol–gel process in different ways. The structures of the materials were characterized by IR spectra, and their properties were studied by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and dynamic analysis (DA). The results show that the hybrids prepared in different ways have different properties, and the contents of SiO2 also have influence on the properties of the hybrids. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 379–383, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号