首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐雷  石秋杰 《工业催化》2005,13(7):7-11
综述了钌催化剂上苯选择性加氢的反应机理、催化剂制备过程中前躯体、制备方法、载体、添加剂(水,有机添加剂,无机添加剂)对催化剂催化性能的影响和反应过程中温度、压力、搅拌速率、催化剂用量及反应时间等对苯转化率、环己烯选择性和环己烯收率的影响。  相似文献   

2.
A method has been developed for direct measurement of reaction rates in a continuously operated slurry (CST-) reactor. In contrast to the usual procedure in a two-liquid-phase system the reactor contains only one liquid phase, an aqueous zinc chloride solution in which a ruthenium lanthanoxide catalyst is suspended. The selectivity of benzene hydrogenation with respect to cyclohexene is higher when the new one-liquid-phase procedure is applied. With decreasing degree of benzene conversion the selectivity with respect to cyclohexene approaches 100%. The conclusion is that cyclohexane is formed only by consecutive hydrogenation of cyclohexene.  相似文献   

3.
席楠  程春晖  李红伟  董鹏  郭鹏  季东 《精细化工》2020,37(12):2457-2466
苯选择加氢是获取高产量环己烯的最佳途径,但该反应极易导致苯的过度加氢生成副产物环己烷,使得环己烯的选择性普遍不高。钌(Ru)是苯选择加氢的高效催化活性中心,Ru活性位的活泼程度及其在载体上的分散性与稳定性很大程度决定了环己烯的选择性和收率。同时,在反应过程中各种添加剂,如酸、碱、盐体系所带来的环境污染和强腐蚀性问题严重地限制了Ru基催化剂在工业上的大规模应用。因此,研究Ru基催化剂上选择加氢活性中心形成机制与制备参数之间的关系,以及在不损失反应性能的前提下寻找更简单、更绿色的催化体系代替传统工艺颇为关键。该文介绍了苯选择加氢合成环己烯的发展历程、反应工艺技术、Ru基催化剂的反应体系组成以及反应机理。最后,指出苯选择加氢制备环己烯研究重点。  相似文献   

4.
环己烯是一种非常重要的有机化工原料,苯选择加氢制环己烯是获取高产量环己烯的最佳途径。长期以来科研工作者们都致力于开发出具有高选择性高收率制环己烯的钌基催化反应体系,然而环境因素使其在工业上大规模应用受到了限制,因此有必要对该领域进一步的深入研究。绿色催化是当下研究的热点之一,开发具有负载少钌且无需反应添加剂的高亲水性催化剂的这一趋势在今后的绿色化学发展中势必加强,因此苯选择加氢制环己烯的技术开发是一项极富有经济意义与科研挑战性的课题。本文从苯选择加氢的反应工艺技术、发展历程、钌基催化剂的反应体系组成以及反应机理等方面,系统介绍了苯选择性加氢制备环己烯的技术进展。  相似文献   

5.
苯部分加氢制环己烯钌基催化剂研究进展   总被引:1,自引:0,他引:1  
环己烯是重要的化工原料及中间体,广泛应用于合成纤维及其他工业领域。介绍了苯部分加氢制环己烯的技术路线,该技术路线具有安全环保和节能高效的特点,其中,催化反应体系是该技术的关键要素。重点概述了近年来对液相苯部分加氢催化体系中钌基催化剂的研究,包括催化剂前驱体、催化剂制备方法、载体、助催化剂以及添加剂对催化剂性能和产物选择性等的影响。介绍了已工业化的旭化成和神马集团的苯部分加氢工艺。环己烯的市场前景广阔,苯部分加氢工艺是一条经济效益高的工艺路线,实现催化体系的突破对于该工艺至关重要,但存在催化剂成本高、易失活和环己烯收率低的问题。  相似文献   

6.
液相法苯选择加氢制环己烯反应条件的探讨   总被引:1,自引:0,他引:1  
采用化学还原法制备负载型钌催化剂,进行了苯选择加氢制环己烯。研究了反应温度、氢气压力、搅拌速率、反应时间对苯转化率、环己烯选择性及收率的影响。结果表明:在最佳反应条件下,反应温度为140℃、氢气压力为6.0MPa、搅拌速率为900r/min、反应时间为20min时,苯转化率为76.27%,环己烯选择性为68.33%,环己烯收率为52.12%。  相似文献   

7.
Ruthenium catalysts were prepared in different alcohols by a chemical mixing technique, characterised by the preparation of a homogeneous solution containing catalyst components, and the uniform coagulation of the solution through hydrolysis. The technique has the potential for controlling the surface area of the catalysts and for making them porous. The ruthenium catalysts were much more effective for the partial hydrogenation of benzene to cyclohexene (maximum cyclohexene yield, 31.4%) in the absence of any poison such as alkali metal hydroxide or transitional metal sulphate in the reaction solution.  相似文献   

8.
采用共沉淀法制备了一系列不同TiO2/ZrO2质量比的TiO2-ZrO2复合氧化物试样。考察了其作为分散剂时Ru-Zn催化剂上苯部分加氢制环己烯的反应性能,并采用N2物理吸附和X射线衍射等手段对TiO2-ZrO2试样进行了表征。结果表明:TiO2在ZrO2表面高度分散,改变了其孔径分布及其晶粒的大小,从而提高了环己烯的选择性;当TiO2/ZrO2质量比为10/90时,环己烯选择性达到最高。催化剂重复使用6次,环己烯选择性仍保持在79%左右。  相似文献   

9.
The hydrogenation of cyclohexene over Pt catalysts supported on alumina, activated carbon, and aluminum borate is investigated in a liquid phase batch reactor at a temperature of 60 °C and a hydrogen pressure of 1 atm. The dispersion of Pt metal on these catalysts was determined by hydrogen adsorption in gas volumetry. Under the conditions employed in this study, the aluminum borate-supported catalyst was found to possess the highest activity. This can be attributed to its high metal dispersion and high turnover frequency.  相似文献   

10.
NaOH浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响   总被引:1,自引:0,他引:1  
用共沉淀法制备了纳米Ru-Zn催化剂,考察了不同浓度NaOH同时作沉淀剂和还原介质对苯选择加氢制环己烯Ru-Zn催化剂性能的影响,并用X射线衍射(XRD)、N2物理吸附(BET)、X射线荧光光谱(XRF)和透射电镜(TEM)手段等对催化剂进行了表征。结果表明,NaOH浓度可以调变Ru-Zn催化剂的Zn含量、粒径和孔径,进而影响Ru-Zn催化剂的苯选择加氢制环己烯性能。NaOH含量为15%时制备的Ru-Zn催化剂在优化的反应条件下获得了61.5%的环己烯收率,而且该催化剂具有良好的重复使用性能。  相似文献   

11.
以三氯化钌(RuCl3)、硫酸锌(ZnSO4)和硫酸亚铁(FeSO4)为原料,采用共沉淀法制备Ru-Zn及Ru-Fe-Zn催化剂,研究了苯选择加氢制环己烯过程中助剂Zn和Zn/Fe对Ru系催化剂催化加氢性能的影响,并利用透射电镜等对催化剂进行表征。结果表明:Ru-Zn催化剂粒子清晰较为分散,Ru-Fe-Zn催化剂粒径变大,比表面积变小;Ru系催化剂中加入助剂Zn,Ru/Zn摩尔比为7时,环己烯选择性较高,加入第三组分Fe,Zn/Fe摩尔比为10,环己烯选择性进一步提高;Ru-Fe-Zn催化剂具有很好的催化活性和稳定性,苯转化率达54.9%,环己烯选择性达81.8%。  相似文献   

12.
Amorphous Pd-Zr alloys, produced by a rapid solidification technique, were studied to determine their catalytic activity for the hydrogenation of cyclohexene and benzene. The activity of the amorphous alloy without pretreatment by air was lower than that of the corresponding crystalline alloy, but it was gradually increased with the pretreatment. The surface area and the hydrogen adsorption activity of the alloys were simultaneously increased with the pretreatment. It is found from X-ray diffraction pattern and SEM observation that palladium, which is an active species for hydrogenation in the amorphous alloys, is highly dispersed on the granulated ZrO2 surface by the pretreatment.  相似文献   

13.
ESCA data show that the addition of titanium to a ruthenium catalyst gives a catalyst containing some metallic ruthenium and a mixed titanium-ruthenium hydrous oxide. The ratio of ruthenium in the metallic form to ruthenium in the hydrous oxide form decreases with increasing titanium concentration. The poisoning effect of titanium on the hydrogenation activity results from the reduced amount of ruthenium metal available.  相似文献   

14.
铂纳米簇/壳聚糖杂化膜催化苯部分加氢制备环己烯   总被引:2,自引:0,他引:2  
研究了铂纳米簇/壳聚糖杂化膜(Pt/CS)对液相苯部分加氢反应的催化性能.通过微波加热还原氯铂酸的方法制备了单分散铂纳米簇,并将其与壳聚糖(CS)进行杂化后得到铂纳米簇/壳聚糖杂化膜.利用,ITEM、Frr-IR、XRD和XPS等对铂纳米簇以及杂化膜的结构进行了表征,透射电镜表明,铂纳米颗粒平均粒径为3.7 mm.XP...  相似文献   

15.
This paper presented a study on the role of yttrium addition to Ru‐based catalysts for liquid phase paranitrotoluene hydrogenation reaction. An impregnation‐precipitation method was used for preparation of a series of yttrium doped Ru/NaY catalysts with yttrium content in the range of 0.0026–0.0052 g/g. Properties of the obtained samples were characterized and analyzed by X‐ray diffraction (XRD), H2‐TPR, Transmission electron microscopy (TEM), ICP atomic emission spectroscopy, and Nitrogen adsorption‐desorption. The results revealed that catalytic activity of NaY supported Ru catalysts increased with the yttrium content at first, then decreased with the further increase of yttrium content. When yttrium content was 0.0033 g/g, a Ru‐Y/NaY2 catalyst showed the most excellent performance of paranitrotoluene hydrogenation reaction (paranitrotoluene conversion and the selectivity toward P‐methyl‐cyclohexylamine reached 99.9 % and 82.5 %, respectively). In addition, to compare with the performance of Ru‐Y/NaY catalysts, the active carbon supported Ru catalysts were prepared using the same method in view of its higher surface area and adsorption capacity. Finally, the effect of solvent on the reaction over Ru‐Y/NaY2 catalyst has been investigated, it was found that the best performance of paranitrotoluene hydrogenation reaction took place in protic solvents (isopropanol and ethanol). This was mainly ascribed to their polarity and hydrogen‐bond accepting capability.
  相似文献   

16.
采用沉积沉淀法制备了以活性炭(C)为载体的Ru催化剂,研究了Ru/C催化剂在苯选择加氢反应中的催化性能,并对Ru/C催化剂进行了表征.结果表明:Ru在催化剂中的分散性好,Ru/C催化剂具有较高的催化活性;适宜的反应条件为温度140℃,压力5.0 MPa,催化剂中Ru质量分数为4.0%,苯的转化率达40%以上,产物环己烯...  相似文献   

17.
芳环加氢反应是最重要的合成反应之一,钌炭催化剂在芳环加氢反应中具有优异的催化性能。综述钌炭催化剂的制备方法和载体性质对钌炭催化剂的影响以及钌炭催化剂在苯、苯甲酸和对苯二甲酸二甲酯等芳环加氢反应中的应用进展。负载型钌炭催化剂的制备方法主要有浸渍法、沉淀法和升华法,超声辅助浸渍法可将大部分钌纳米粒子引入到炭载体的孔道内部,得到限域型负载钌炭催化剂。而镶嵌式钌炭催化剂主要是指通过原位炭化的方法将钌粒子部分镶嵌在炭的孔壁上,一步得到钌炭催化剂,其制备方法主要有软模板剂法和硬模板剂法。除制备方法外,炭的骨架结构、表面性质及氮掺杂对钌炭催化剂的性能影响也较大。镶嵌式钌炭催化剂具有钌纳米粒子和炭载体之间的相互作用强、催化剂抗流失及烧结性能好,在芳环加氢反应中表现出卓越的催化性能和稳定性。随着新制备技术的出现,新型镶嵌式钌炭催化剂将可能实现产业化。  相似文献   

18.
Two types of impregnation solvents were suggested for preparation of the ruthenium supported catalysts. Charcoal, silica, alumina and titania supports were used. Special attention was paid to reduction and activation conditions of nonreduced and passivated forms, respectively. Hydrogenation of 1-heptene, cyclohexene, benzene and acetophenone in the liquid phase were studied using the prepared catalysts.  相似文献   

19.
苯加氢制备环己烷的催化剂研究进展   总被引:3,自引:1,他引:2  
介绍了苯加氢制备环己烷的一般工艺,对苯加氢制备环己烷催化剂的研究进行了综述,包括镍系、铂系、钌系等,且对今后催化剂的研究方向进行了展望。  相似文献   

20.
介绍了苯加氢制环己烷工艺及催化剂研究现状,对比各工艺和催化剂的优缺点,气相法和液相法是苯加氢制环己烷的成熟工艺,在未来很长一段时间仍将是苯加氢制备环己烷的主要工艺。开发高活性、耐热性能好和抗毒能力强的贵金属催化剂是苯加氢制备环己烷催化剂的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号