首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignins are generally used as a low-grade fuel in the pulp and paper industry. In this work, pyrolysis of Alcell and Kraft lignins obtained from Alcell process and Westvaco, respectively, was carried out in a fixed-bed reactor to produce hydrogen and gas with medium heating value. The effects of carrier gas (helium) flow rate (13.4–33 ml/min/g of lignin), heating rate (5–15°C/min) and temperature (350–800°C) on the lignin conversion, product composition, and gas yield have been studied. The gaseous products mainly consisted of H2, CO, CO2, CH4 and C2+. The carrier gas flow rate did not have any significant effect on the conversion. However, at 800°C and at a constant heating rate of 15°C/min with increase in carrier gas flow rate from 13.4 to 33 ml/min/g of lignin, the volume of product gas decreased from 820 to 736 ml/g for Kraft and from 820 to 762 ml/g for Alcell lignin and the production of hydrogen increased from 43 to 66 mol% for Kraft lignin and from 31 to 46 mol% for Alcell lignin. At a lower carrier gas flow rate of 13.4 ml/min/g of lignin, the gas had a maximum heating value of 437 Btu/scf. At this flow rate and at 800°C, with increase in heating rate from 5 to 15°C/min both lignin conversion and hydrogen production increased from 56 to 65 wt.% and 24 to 31 mol%, respectively, for Alcell lignin. With decrease in temperature from 800°C to 350°C, the conversion of Alcell and Kraft lignins were decreased from 65 to 28 wt.% and from 57 to 25 wt.%, respectively. Also, with decrease in temperature, production of hydrogen was decreased. Maximum heating value of gas (491 Btu/scf) was obtained at 450°C for Alcell lignin.  相似文献   

2.
Glycerol is one of the by-products of transesterification of fatty acids to produce bio-diesel. Increased production of bio-diesel would lead to increased production of glycerol in Canadian market. Therefore, the production of hydrogen, syn gas and medium heating value gas is highly desirable to improve the economics of bio-diesel production process. In this study, steam gasification of pure and crude glycerol was carried out in a fixed-bed reactor at the liquid hourly space velocity (LHSV) and temperature of 0.77 h?1 and 800 °C, respectively. In this process, the effects of different packing materials such as quartz particle and silicon carbide were studied. Catalytic steam gasification was performed in the presence of commercial Ni/Al2O3 catalyst in the range of steam to glycerol weight ratio of 0:100–50:50 to produce hydrogen or syngas when LHSV was maintained constant at 5.4 h?1. Pure glycerol was completely converted to gas containing 92 mol% syngas (molar ratio of H2/CO ≈ 1.94) and the calorific value of 13 MJ/m3 at 50:50 weight ratio of steam to glycerol. Hydrogen yield was increased by 15 mol% via the steam gasification process when compared to pyrolysis process. The presence of catalyst increased further the production of hydrogen and total gas in case of both pure and crude glycerol indicating their strong potential of making hydrogen or syngas. Maximum hydrogen, total gas and syn gas production of 68.4 mol%, 2.6 L/g of glycerol and 89.5 mol% were obtained from glycerol using Ni/Al2O3 catalyst at temperature and steam to glycerol ratio of 800 °C and 25:75, respectively.  相似文献   

3.
The purpose of this research was to study steam gasification of ash‐free coal integrated with CO2 capture in the presence of a K2O catalyst for enhancement of the key water‐gas shift reaction and promotion of hydrogen production. To achieve this goal, gasification experiments on ash‐free coal (AFC) were carried out at varying temperatures (600, 650, 675, 700, and 750 °C) with a sorbent‐to‐carbon (CaO/C) ratio of 2 and a catalyst (K2O) loading of 0.2 g/g (20 weight percent (wt%)) in a fixed‐bed reactor equipped with a gas chromatography analyzer. The sorbent‐to‐carbon (CaO/C) ratio of 2 is based on dry and ash‐free basis. The CaO/C ratio and K2O wt% were chosen to maximize hydrogen production based on our previously determined optimal values. The AFC was originally extracted from raw lignite coal using organic solvents, which allowed the sorption‐enhanced gasification to be conducted with minimal ash‐catalyst interactions. The effect of temperature on the yield and the initial reaction rate were investigated. The optimal reaction temperature of 675 °C was determined. Carbon balance and final carbon conversions were calculated based on the residue analysis. Activation energy was also calculated using intrinsic kinetics of the reaction. In this study, using AFC offered the potential advantage of operating the gasification process with catalyst recycle.  相似文献   

4.
Various Ni‐Co bimetallic catalysts were prepared by incorporating sol‐gel and wet impregnation methods. A laboratory‐scale fixed‐bed reactor was employed to investigate their effects on hydrogen production from steam reforming of bio‐oil. The catalyst causes the condensation reaction of bio‐oil, which generates coke and inhibits the formation of gas at temperatures of 250 °C and 350 °C. At 450 °C and above the transformation of bio‐oil is initiated and gaseous products are generated. The catalyst also can promote the generation of H2 as well as the transformation of CO and CH4 and plays an active role in steam reforming of bio‐oil or gaseous products from bio‐oil pyrolysis. The developed 3Ni9Co/Ce‐Zr‐O catalyst achieved maximum hydrogen yield and lowest coke formation rate and provided a better stability than a commercial Ni‐based catalyst.  相似文献   

5.
Kraft lignin was pyrolyzed in molten salt media of ZnCl2-KCl mixture with tetralin vapor added in 0.4 and 4 mol% diluted with N2 in the temperature range of 400 to 700°C. The gas chromatographic analyses of pyrolysis products revealed that the yield of H2 was not increased by tetralin vapor addition. This fact implies that the hydrogen radical produced from tetralin is consumed in the formation of phenolic compounds and light liquids but not in the formation of H2. p-Cresol was the most abundant phenolic compound. The yield of total phenolic compounds with 4 mol% tetralin vapor added was increased by ca. 80% as compared to that in neat pyrolysis of Kraft lignin.  相似文献   

6.
Microwave liquefaction of precipitated Kraft lignin was carried out in polyethylene glycol (PEG) and glycerol (G) mixed with or without H2SO4 as catalyst. The influences of some independent variables on the yield and hydroxyl index were discussed. The viscosity, molecular distribution (GPC), and the types of volatiles measured by gas chromatography–Mass spectrometry (GC-MS) of all the liquefied products were determined. Response surface methodology (RSM) was used to optimize liquefaction conditions. Based on the results, lignin/solvents (wt%), catalyst/solvents (wt%), and reaction time were chosen as independent variables for a central composite design (CCD). The optimal liquefaction conditions were as: 20 wt% of lignin, 3 wt% of catalyst at 5 min with yield and hydroxyl number of 95.27% and 537.95 mg KOH.g?1, respectively. Functional groups (measured by ATR-IR [attenuated total reflectance – infrared]) and the thermal degradation (TGA) of optimized bio-polyol and precipitated kraft lignin were determined.  相似文献   

7.
The synthesis of copolymers between lignin and electron poor alkenes is described. Lignin from steam‐exploded pine, from steam‐exploded straw, and organosolv were used as starting materials. Beforehand, lignins were fully characterized by using elemental analysis, ultraviolet spectroscopy, gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and both1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The synthesis of copolymers was performed using a previously described procedure utilizing calcium chloride and hydrogen peroxide as reagents. FTIR of copolymers showed absorptions due to the presence of both lignin and the electron withdrawing group on the alkene. GPC analysis showed the presence of fractions with high molecular weights: the Mz of lignin from pine was 3729 while the copolymer with methyl acrylate showed Mz = 383790. Differential calorimetry showed the presence of glass transitions in the range of ?9 to 4.5°C due to the presence of grafted polyalkene chains. When acrylonitrile was used as starting material DSC analysis of the product showed a glass transition at 119°C, which can be attributed to grafted polyacrylonitrile chain. Lignin from steam explosion could be a good raw material in the preparation of graft copolymers. Furthermore, lignin from pine gave better results than that from straw. Finally, lignin from steam explosion gave better results than organosolv lignin. These results can be explained on the basis of the structural properties of used lignins. Both UV and 13C NMR spectra showed that lignin from pine contained a consistent amount of double bonds. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1163–1171, 2003  相似文献   

8.
In a bio-refinery focused on fast pyrolysis, hydrogen (H2) producible from reforming of the aqueous fraction of bio-oil with steam can be utilized for upgrading pyrolytic lignin into fuels by hydrotreatment. In this work, propylene glycol (PG) was chosen as a typical compound symbolizing higher polyols in the bio-oil aqueous fraction. Catalytic processing of PG into H2 at low temperature (T = 500°C) was investigated using several commercial catalysts such as Ni/Al2O3, Ru/Al2O3, Ru/C, Pt/C, and Pd/C in a laboratory-scale fixed-bed reactor. The efficiencies of the catalysts were presented as selectivity to CO, CO2, CH4 and H2, and PG conversion into gaseous phase. Wide ranges of temperature (300–500°C), W/FO (18.6–92.9 g h/mol), and S/C ratio (5.6–12.7 mol/mol) were examined using Ni/Al2O3. At T = 500°C, H2 selectivity (73.7%) and PG conversion (66.2%) were maximized using ratios of catalyst mass to molar flow rate of PG (W/FO) = 18.6 g h/mol and steam to carbon (S/C) = 12.7 (10 wt% PG solution). It was found that Ni/Al2O3 demonstrates stable operation for at least 6 h of time-on-stream. Finally, a plausible reaction pathway for PG reforming was proposed.  相似文献   

9.
In this study, alkaline lignin (AL), dealkaline lignin (DAL), and lignin sulfonate (SL) were liquefied in phenol with sulfuric acid (H2SO4) or hydrochloric acid (HCl) as the catalyst. The phenol‐liquefied lignins were used as raw materials to prepare resol‐type phenol‐formaldehyde resins (PF) by reacting with formalin under alkaline conditions. The results show that phenol‐liquefied lignin‐based PF resins had shorter gel time at 135°C and had lower exothermic peak temperature during DSC heat‐scanning than that of normal PF resin. The thermo‐degradation of cured phenol‐liquefied lignin‐based PF resins was divided into four temperature regions, similar to the normal PF resin. When phenol‐liquefied lignin‐based PF resins were used for manufacturing plywood, most of them had the dry, warm water soaked, and repetitive boiling water soaked bonding strength fitting in the request of CNS 1349 standard for Type 1 plywood. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
BACKGROUND: A simple and effective method with environmental and economic benefits has been developed to produce spherical lignin and spheroidal microporous/mesoporous activated carbon from pulping black liquor. RESULTS: Spherical lignin with regular size of about 100 nm was obtained at 90 °C after 8 h treatment at pH 2. Pyrolysis of spherical lignin was impregnated with H3PO4 producing spheroidal microporous/mesoporous activated carbon with high apparent Brunauer–Emmett–Teller (BET) surface area of 1972 m2 g?1 and high carbon content of 68.0 wt% at 700 °C with impregnation ratio of 1:7. CONCLUSION: The process was inexpensive, sustainable, environment‐friendly and suitable for large‐scale production. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Pyrolytic lignin can be transformed to liquid transportation fuels by hydrotreatment, which requires hydrogen (H2). Bio‐oil is a suitable renewable feedstock for H2 production. Here, n‐butanol was chosen as a model compound representing alcohols in the bio‐oil aqueous fraction. H2 production from steam reforming of n‐butanol was investigated in a fixed‐bed reactor using a commercial Ni/hydrotalcite catalyst. A plausible reaction pathway in the presence of Ni was discussed. An increase in reforming temperature, space time, and steam/carbon ratio in the feed enhanced the n‐butanol conversion and H2 yield. Reaction kinetics was studied in the defined chemical control regime. The reaction order with respect to n‐butanol (one) and the activation energy were determined.  相似文献   

12.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation.  相似文献   

13.
The aim of this study is to highlight the application and potentiality of oil palm based lignins in the synthesis of green phenolic resins. The delignification processes were conducted using Kraft and auto-catalyzed ethanol–water pulping processes. The extracted lignins were characterized using elemental analysis, Fourier transform-infrared, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, molecular weight distribution (Mn, Mw and polydispersity), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained FTIR results revealed that the Kraft lignin contained substantial amounts of guaiacyl units with smaller amounts of syringyl units. The molecular weight of Kraft lignin was 1564 g mol−1 which is higher than organosolv lignin at 1231 g mol−1. The activated free ring position (2.99%) of Kraft lignin was comparatively higher than that of organosolv lignin (2.06%) which was measured using Mannich reactivity analysis. Thermal analysis of Kraft lignin showed higher thermal stability compared to organosolv lignin. The structural and thermal characteristics implied that Kraft lignin had higher potential for the production of green phenolic resins when compared with organosolv lignin.  相似文献   

14.
Alcell‐derived lignin was depolymerized in a batch reactor using the Lewis acid catalysts NiCl2 and FeCl3. The objective was to investigate the use of Lewis acids in the production of useful liquid products directly from solvolysis lignin. The effects of reaction temperature, time and catalyst were studied on the conversion of this lignin to gas, solid and liquid products. Also, selected monomeric compounds in the ether solubles were monitored in terms of the variation in their yields with different reaction conditions. The highest conversions, 30% and 26% from Ni and Fe, respectively, were both attained at the reaction conditions of 305°C and 1 h reaction time. The Ni produced a somewhat higher yield of ether solubles, reflecting its slightly higher performance. Under the reaction conditions studied, both catalysts apparently favour condensation reactions leading to the formation of insoluble reactor residue from solvolysis lignin. Low quantities of monomeric compounds were produced, with phenols dominating over ketones and aldehydes for both catalysts.  相似文献   

15.
Yttria‐stabilized zirconia (YSZ, 8 mol% Y2O3) scaffolds, with surface areas up to 68 m2/g, were prepared by sintering hybrid inorganic‐organic propylene oxide (PO) gels in an argon atmosphere between 1050°C and 1350°C. During sintering, a hard carbon template forms in situ that preserves the scaffold nanomorphology. The carbon template is completely removed postsinter by heating in air to 700°C. Surface areas of 24, 14, 3.2, and 2.4 m2/g were achieved for argon sintering temperatures of 1050°C, 1150°C, 1250°C, and 1350°C, respectively. By adding glucose to the gel formulation, the amount of carbon template increases from 4 to 59 wt% and the surface area increases from 14 to 68 m2/g. Remarkably, the surface area only decreases to 59 m2/g upon heating to 900°C in air. This in situ carbon templating approach offers a flexible platform to create and preserve highly desirable surface areas and nanomorphologies while sintering at high temperatures. The utility of this approach to improve low‐temperature solid oxide fuel cell electrode performance is discussed.  相似文献   

16.
Extraction of the dewaxed rice straw with 1% NaOH at 55°C for 2 h and following treatment without and with 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0% hydrogen peroxide (H2O2) at 45°C for 12 h at pH 11.5 resulted in a dissolution of 68.3, 85.4, 89.4, 92.3, 92.3, 94.3, and 95.1% of the original lignin, respectively. Meanwhile, the two‐stage treatment together solubilized 67.2, 77.2, 78.7, 83.7, 85.5, 87.3, and 88.5% of the original hemicelluloses and degraded 2.5, 9.8, 11.8, 12.1, 15.6, 16.4, and 17.8% of the original cellulose under the conditions given, respectively. Analyses of these lignins revealed that alkali‐soluble lignin fractions did not suffer sever oxidation, but nearly 60% of the original lignin was dissolved out during the first stage of alkali treatment. In the second stage of alkaline peroxide treatment, the residual lignins were substantially released and enriched in oxidized carbonyl and carboxyl groups. In comparison, the isolated eight pure lignin samples were further characterized by both destructive methods such as alkaline nitrobenzene oxidation and nondestructive techniques such as ultraviolet (UV), Fourier transform infrared (FTIR), and carbon‐13 magnetic resonance spectroscopy (13C‐NMR) as well as gel permeation chromatography (GPC), and the results are reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 719–732, 2001  相似文献   

17.
P. Lan  Q. Xu  M. Zhou  L. Lan  S. Zhang  Y. Yan 《化学工程与技术》2010,33(12):2021-2028
Catalytic steam reforming of bio‐oil is an economically‐feasible route which produces renewable hydrogen. The Ni/MgO‐La2O3‐Al2O3 catalyst was prepared with Ni as active agent, Al2O3 as support, and MgO and La2O3 as promoters. The experiments were conducted in fixed bed and fluidized bed reactors, respectively. Temperature, steam‐to‐carbon mole ratio (S/C), and liquid hourly space velocity (LHSV) were investigated with hydrogen yield as index. For the fluidized bed reactor, maximum hydrogen yield was obtained under temperatures 700–800 °C, S/C 15–20, LHSV 0.5–1.0 h–1, and the maximum H2 yield was 75.88 %. The carbon deposition content obtained from the fluidized bed was lower than that from the fixed bed. The maximum H2 yield obtained in the fluidized bed was 7 % higher than that of the fixed bed. The carbon deposition contents obtained from the fluidized bed was lower than that of the fixed bed at the same reaction temperature.  相似文献   

18.
In this work, a systematic study has been conducted to optimize the process conditions and to evaluate kinetic parameters for hydrodenitrogenation (HDN) and hydrodesulphurization (HDS) of heavy gas oil derived from Athabasca bitumen using NiMo/Al2O3 catalysts containing phosphorus (P). In the catalyst, the concentration of phosphorus was maintained at 2.7 wt%. Experiments were performed in a tickle‐bed reactor at the temperature, pressure and liquid hourly space velocity (LHSV) of 340‐420°C, 6.1‐10.2 MPa and 0.5‐2 h?1, respectively. H2 flow rate and catalyst weight were maintained constant at 50 mL/min and 4 g, respectively in all cases. Statistical analysis of all experimental data was carried out using ANOVA to optimize the process conditions for HDN and HDS reactions. Kinetic studies for HDN and HDS reactions were studied within the temperature range of 340‐400°C using the power law model as well as the Langmuir‐Hinshelhood model. The power law model showed that HDN and HDS of heavy gas oil follow first order kinetics. The activation energies for HDN and HDS reactions from the power law and Langmuir‐Hinshelwood models were 94 and 96 kJ/mol and 113 and 137 kJ/mol, respectively.  相似文献   

19.
Catalytic steam reforming of glycerol for renewable hydrogen generation has been investigated over Ni/CeO2 catalyst prepared by precipitation-deposition method. The fresh and used catalysts were characterized by surface area and pore size analysis, X-ray diffraction patterns and scanning electron micrographs. Reforming experiments were carried out in a fixed bed tubular reactor at different temperatures (400–700 °C), glycerol concentrations (5–15 wt%) and contact times. (W/F Ao =2−80 g-cat·h/mol of glycerol). The investigation revealed that the Ni/CeO2 catalyst prepared by the above method is effective to produce high yield of hydrogen up to 5.6 (moles of H2/moles of glycerol fed). The formation of methane and carbon monoxide was greatly reduced over this catalyst. Significantly low amount of coke deposition was observed on the CeO2 supported catalyst. From the kinetic analysis, the activation energy for the steam reforming of glycerol was found to be 36.5 kJ/mol.  相似文献   

20.
The oxidation of low concentrations of hydrogen sulfide with air over activated carbon was studied over the temperature range 24-200°C using both fixed and fluid bed reactors. The predominant reaction, H2S + ½ Oa → H2O + S, was found to have an order of 0.5 with respect of H2S concentration. Activity of the catalyst decreased as the amount of sulfur deposited on it increased. Indirect evidence suggests that adsorption of water by the carbon also decreases its activity as a catalyst at lower temperatures. Values of the activation energy and the frequency factor were determined for various sulfur loadings using the fixed bed reaction system. Regeneration of the carbon loaded with sulfur was studied at temperatures between 150 and 500°C using steam as a carrier gas. Bright yellow sulfur was recovered. The regenerated carbon was shown to have its original activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号