首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transesterification of polymer blends containing polyesters is often utilized to improve the interfacial adhesion and mechanical properties of a phase‐separated blend. However, in some circumstances, the transesterification can also modify the morphology (crystallinity or liquid crystallinity) of the blend components due to the disruption of the structure of a regular polymer. This, in turn, can deteriorate the mechanical properties of the blend. We present, in this article, results that correlate the extent of transesterification between a liquid crystalline polyester and polycarbonate to the change in the mechanical properties of the blend and the liquid crystallinity of the liquid crystalline polymer (LCP). The results exemplify the need to understand the role of transesterification on the morphology and mechanical properties of the blend so that the optimum processing conditions may be found. The experimental protocol can also be used as a guide to determine these optimal processing conditions. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2583–2592, 2001  相似文献   

2.
Our study was focused on the presupposition that morphology control in immiscible polymer blend could give rise to reinforcement in composites. To investigate the effects of shear and elongational flow in polymer processing, observation of the mechanical properties and the morphology of the polypropylene/polycaprolactone (PP/PCL) blend system was performed. PP/PCL sheets were fabricated by means of a single‐screw extruder equipped with a slit‐type die to which high shear and elongational stresses were applied. For the sake of comparison, a second series of composites of identical composition was compression molded with a hot‐press machine that transmits lower shear and elongational stresses. The results indicate that the extruded sheets have better mechanical properties than those of the compression‐molded sheets, a result attributed to the generation of in situ dispersed long fiber minor phases and cocontinuous phases in the extruded composites. The differences in the crystallization behavior of the fibrous and spherically shaped components were indicated clearly by DSC curves. A PP crystalline peak indicative of in situ PP fiber formation is conspicuous around 980 cm−1 (PP crystalline band) in the FTIR spectrum. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 833–840, 2004  相似文献   

3.
Three polycarbonate (PC) composites that were reinforced, respectively, with liquid crystalline polymer (LCP), glass fibers, and both of them were prepared by a single injection‐molding process. The role of LCP in improving the processibility of the composites was characterized by torque measurement test. The transitions of LCP morphology in two‐ and three‐component composites were investigated by using polarizing optical microscopy and scanning electron microscopy. The micrographs showed a skin–core gradient structure in all three systems investigated, and the addition of glass fiber to the PC/LCP blend affected the morphological transition and content distribution of dispersed LCP phase through the thickness of the injection‐molded samples. These results were correlated well with the measurements of tensile mechanical properties and dynamic mechanical analysis. How to fully use the dispersed LCP phase in PC in situ hybrid composites was discussed for the thickness change of core layer and the heterogeneous distribution of more LCP in the core. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 625–634, 2004  相似文献   

4.
Blends of low‐density polyethylene (LDPE) and a glass‐filled thermotropic liquid crystalline polymer (LCP‐g) have been prepared by melt mixing techniques. The thermal transitions, dynamic behavior, morphology and crystalline properties of the blends have been measured by DSC, DMTA, SEM and XRD respectively. The crystallinity decreased with increase in LCP‐g content in the blends. At higher levels of LCP‐g, crystal growth is favored in the PE phase. From DSC, it is found that the thermal stability of the blends increased with the LCP‐g content. The variation of storage modulus, loss modulus and stiffness as a function of blend ratio suggested the phase inversion at the 40–50% level of LCP‐g in the blend. SEM studies revealed that with the increase in LCP‐g content, the flow of the matrix was restricted.  相似文献   

5.
Blends of syndiotactic polystyrene (s-PS), thermotropic liquid crystalline polymer (Vectra A-950), and silicone rubber with two different loading levels, have been prepared through melt processing in internal mixer at 285°C. Silicone rubber was used as a compatibilizer for this blend system. The effect of silicon rubber on crystalline, dynamic mechanical, rhelogical, thermal properties, and phase morphology of the (s-PS/TLCP) blend has been investigated in details. With the addition of compatibilizer the viscosity of the blend system increased to an order of magnitude. Dynamic mechanical analysis (DMTA) and differential scanning calorimetry (DSC) results showed that the glass transition temperature (Tg) of the blend, in presence of silicone rubber, shifted towards lower temperature region. From FTIR analysis it is evident that the ‘C=O’ stretching frequency has shifted towards lower side. SEM analysis suggested that, the TLCP domain size is reduced in ternary blend in comparison to binary blend system.  相似文献   

6.
A unique methodology employing a “nearly co‐continuous morphology” for processing immiscible polymers into strong fiber is presented, and an immiscible polypropylene/polystyrene (PP/PS) blend is used as a model system to demonstrate the effectiveness of this methodology. The “nearly co‐continuous morphology” is easier to obtain than the fully co‐continuous structure, and yet, it provides an engineering solution to the production of strong fiber from an immiscible polymer blend. In addition, a process different from traditional melt spinning is used to prepare fiber with good mechanical properties. Traditional melt spinning involves large jet stretch and therefore introduces large interfacial orientation but little molecular orientation in polymer blends. To address this issue, the PP/PS blend is spun with nearly zero jet stretch and after solidification undergoes hot drawing at temperature close to the glass transition temperature of PS. This process sequence imparts a large degree of molecular orientation to the PP phase and produces a strong fiber. The proposed methodology can be extended to other blend systems and provides a potential route for directly recycling commingled polymer waste without preseparation or compatibilization. POLYM. ENG. SCI., 59:2052–2061, 2019. © 2019 Society of Plastics Engineers  相似文献   

7.
Blends of an amorphous polyamide (PA) and a liquid crystalline copolyesteramide (LCP), poly(naphthoate-aminophenoterephthalate) were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. Morphological, thermal, mechanical, and rheological properties were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, capillary rheometry, and a tensile tester, respectively. The tensile mechanical behavior of the LCP/PA blends was found to be affected by their compositions and specimen thickness. Tensile testing revealed that the tensile mechanical behavior of the LCP/PA blends was very similar to that of polymeric composite and the tensile strength of the LCP/PA (50/50) blend was approximately two times of the value of PA homopolymer and exceeded that of pure LCP. The morphology of the LCP/PA blends was also found to be affected by their compositions. SEM studies revealed that the liquid crystalline polymer (LCP) formed finely dispersed spherical domains in the PA matrix and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. It has been found that droplet and fiber formations lead to low and high strength material, respectively. In particular, at specific LCP content (50 wt%), the tensile strength of the LCP/PA blend exceeded that of pure LCP. The improvement in tensile properties is likely due to the reinforcement of the PA matrix by the fibrous LCP phase as observed by SEM. A distinct shell-core morphology was found to develop in the injection molded samples of these blends. This is believed to have a synergistic effect on the tensile properties of the LCP/PA blends. The rheological behavior of the LCP/PA blends was found to be very different from that of the parent polymers and significant viscosity reductions were observed for the LCP/PA (50/50) blend. Based upon DSC, these blends have shown to be incompatible in the entire range of concentrations.  相似文献   

8.
Blends of aromatic/aliphatic polyamides of varying compositions were extrusion compounded with an impact modifying reactive elastomer and injection molded. The effect of two different twin-screw blending configurations on the physical and mechanical properties of the blends was evaluated. Effects of processing conditions on blend morphology were also examined. The experimental results indicate that the extrusion sequence affects the extent of polyamide matrix-elastomer reaction as well as the morphology. The relationship between blend morphology, blend components structure and reactivity, and processing conditions with ultimate properties is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
液晶共聚酯60PHB/PET(TLCP)与聚碳酸酯(PC)共混可制备原位复合材料,两者1:1的共聚物(TLCP-b-PC)可作其共混体系的相容剂。本文对该原位复合体系的流变性能、力学性能、纺丝性能和微观形态作了讨论。结果表明:该体系为切力变稀流体;PC:TLCP:TLCP-b-PC组成为79:19:2时,综合力学性能最优;不同原位复合体系最佳纺丝温度各不相同;相容剂对提高界面粘合力起了良好的作用。  相似文献   

10.
Fibers (strands) with various draw ratios were spun from the liquid crystalline state of a pure aromatic liquid crystalline copoly(ester amide) and the melts of its blend with polycarbonate. Scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC) were employed to investigate the structure and properties of the resulting fibers. Mechanical properties of the fibers were also evaluated. It was found that both the crystallite size and heat of fusion of the liquid crystalline polymer (LCP) increase steadily with draw ratio. However, the crystal-nematic transition temperature of the LCP is virtually unaffected by drawing. Moreover, heat of fusion of LCP is much smaller than that of isotropic condensation polymers despite the presence of very sharp diffraction peaks in WAXS measurements. These results are ascribed to the (semi)rigid rod nature of the LCP chains and the persistence of an ordered structure in the LCP melt, i.e., entropy effect. It was further observed that tensile modulus and tensile strength along fiber axis rise with draw ratio for the composite fibers. The elastic modulus of the composite fibers were found to be as high as 19 GPa and tensile strength reached 146 MPa with draw ratios below 40 and an LCP content of 30 wt%. Compared with the thermoplastic matrix, the elastic modulus and tensile strength of the in-situ composite have increased by 7.3 times and 1.4 times, respectively, with the addition of only 30 wt% LCP. This improvement in mechanical properties is attributed to fibrillation of the LCP phase in the blend and the increasing orientation of the LCP chains along the fiber axis during drawing.  相似文献   

11.
The physical properties, thermal stability, rheology and tensile properties of a commercial semi-crystalline and an amorphous thermotropic liquid crystalline polymer (TLCP) have been investigated. Analysis by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) confirm the presence of a small melting endotherm and a glass transition in the former material. The as-received amorphous TLCP exhibits no obvious melting endotherm and a strong glass transition is detected. The flow and tensile properties of the semicrystalline polymer are dominated by the presence of the crystalline to nematic transition temperature. The properties of the amorphous TLCP appear to be governed by increasing mobility afforded by increasing temperature. Based on flow behaviour and further DSC analysis it has been shown that under appropriate annealing conditions the as-received amorphous TLCP can develop solid crystalline order.  相似文献   

12.
The effect of functionalized polyphosphazene on the thermal, rheological, and morphological properties of PPO (poly(phenylene oxide))/liquid crystalline polymer (Vectra A) blend has been investigated by means of the capillary rheometry, mechanical testing, and scanning electron microscopy (SEM) in this study. The rheological measurements show that compatibilized blends exhibit substantial rise in viscosity in comparison to uncompatilized blend especially pronounced at lower shear rates which results in improved interfacial adhesion. DMA study highlights that polyphosphazene could be used as an effective compatibilizer for the concerned blend system. SEM study reveals fine fibrillation of liquid crystalline polymers in presence of compatibilizer and the fibers are oriented in the direction of flow field. The mechanical properties of the ternary blends are increased when a proper amount of polyphosphazene is added. This is attributed to fine strand generation induced via the addition of polyphosphazene. Enhanced adhesion at the interface invokes better elongation in the ternary blends. However, mechanical properties deteriorate considerably when polyphosphazene content is 5 wt %. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The addition of small amounts of liquid‐crystalline polymers to thermoplastics leads to the formation of in situ–reinforced materials, with improved processability and mechanical properties. Nevertheless, the lack of adhesion between the thermoplastic and the liquid‐crystalline polymer often occurs, thus requiring the use of compatibilizers. In this case, the results of several previous works show that there is an improvement of strength, usually accompanied by a decrease of toughness and, thus, the interest of LCP/TP blends for industrial applications will certainly increase if both strength and toughness are obtained. Additionally, the emphasis of previous studies has been on the evaluation of the properties of the blend under stationary conditions and not under non‐stationary ones, which are, in fact, those most relevant to processing sequences. Thus, the present work focuses on the influence of type of compatibilizer on the mechanical and rheological properties of polypropylene/LCP blends under nonstationary conditions. In terms of mechanical properties, the traditional increase of tensile strength was obtained for all compatibilizers, which was essentially due to the formation, during processing, of thinner and longer fibrils of LCP dispersed in the matrix than those observed for the noncompatibilized blends. Additionally, an improvement of the impact strength and flexural modulus was also observed for the blend in which a compatibilizer with an elastomeric nature was used. Rheologically, the experiments most sensitive to the structure were those performed in transient shear, with an increase of the transient stress (in the form of an overshoot) of different magnitudes being observed for the different compatibilizers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 694–703, 2005  相似文献   

14.
Fine polypropylene fiber has many excellent properties, but it is difficult to dye because of the absence of dye sites in the molecular chain and high crystallinity. Fine polypropylene/hybrid polystyrene (yttria) fiber melt‐spun from blends of polypropylene and a small amount of nanohybrid polystyrene with modified yttria incorporated was prepared to improve the dyeing properties. The dyeability, orientation, degree of crystallinity, phase morphology, and mechanical properties of pure polypropylene and the blend fibers were investigated. It was found that the crystallinity and morphology of these phases in the blend systems were different. With the existence of nanohybrid polystyrene, the fine modified polypropylene filaments had practical mechanical properties, the amorphous region of the polypropylene/hybrid polystyrene (yttria) fiber increased, and the modified polypropylene fiber dyed easily and had good fastness to soaping because of the complexation of the disperse dye and yttrium in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Epoxy, prepared through aminomethyl 3,5,5‐trimethylcyclohexylamine hardening of diglycidylether of bisphenol‐A (DGEBA) prepolymer, toughened with polycarbonate (PC) in different proportions, and reinforced with carbon fiber, was investigated by differential scanning calorimetry, tensile and interlaminar shear strength testing, and scanning electron microscopy (SEM). A single glass transition temperature was found in all compositions of the epoxy/PC blend system. The tensile properties of the blend were found to be better than that of the pure epoxy matrix. They increased with PC content up to 10%, beyond which they decreased. The influence of carbon fiber orientation on the mechanical properties of the composites was studied, where the fiber content was kept constant at 68 wt %. Composites with 45° fiber orientation were found to have very weak mechanical properties, and the mechanical properties of the blend matrix composites were found to be better than those of the pure epoxy matrix composites. The fracture and surface morphologies of the composite samples were characterized by SEM. Good bonding was observed between the fiber and matrix for the blend matrix composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3529–3536, 2006  相似文献   

16.
To improve the structure and hard elasticity of poly(vinylidene fluoride) (PVDF) fibers, a small amount of the plasticizer dibutyl phthalate (DBP) was added to PVDF. The PVDF/DBP blend fibers were prepared by melt spinning and subsequent annealing. The crystalline structure and thermal properties of the blend fibers were analyzed in terms of the long‐period lamellar spacing, crystal structure, and degree of crystallinity with X‐ray diffraction, differential scanning calorimetry, and small‐angle X‐ray scattering. The results indicated that stacked crystalline lamellae, which were aligned normal to the fiber axis, existed in the blend fibers, and they were in the form of an α‐crystal phase. The total crystallinity of the blend fibers was higher than that of the pure PVDF fibers, and it reached its highest value when the DBP concentration was 2 wt %; then, it decreased with an increase in the DBP content. The morphology and mechanical properties of the fibers were also investigated with scanning electron microscopy and electronic tensile experimentation. The results of scanning electron microscopy apparently exhibited a small porous structure on the surface of the blend fibers, and the more DBP there was in the PVDF fibers, the more porous structure was obtained. Mechanical experiments indicated that the fibers with a 5 wt % concentration of DBP had better elastic recovery and breaking strain than the pure PVDF fibers. These results all indicated that DBP‐modified PVDF fibers have potential applications in preparing microporous membranes by a melt spinning and stretching process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of liquid crystal polymer/polyethylene (LCP/PE) blends have been studied to determine the potential of such a system to produce a high modulus film material which retains fabrication and low temperature characteristics of some current PE films. The subject of liquid crystalline polymer blends has been the focus of significant attention for the last decade due to the novel rheological and mechanical properties of this class of polymers. It has been demonstrated that if an LCP blend is processed under elongational flow conditions, the partially ordered LCP meso-phase intermediate allows the development of an oriented fibrillar morphology which is retained upon solidification. In this study, blown films of blends of 5 and 15% LCP in PE have been produced which show an enhancement in modulus over the neat PE matrix. These results are discussed in terms of processing conditions, LCP reinforcement aspect ratio, fibril diameter, and LCP/PE modulus ratio.  相似文献   

18.
Polymer blends comprising liquid crystal polymers, LCP, as a minor component can be formed into fibrillar-type morphology. This morphology enables the generation of improved mechanical properties in the draw direction, in a manner comparable to unidirectional composites: In this paper, the results obtained for blends of a polyetheresteramide block copolymer, PEBA, with a liquid crystalline copolyester are presented. Films prepared using a single-screw extruder were melt drawn on calendering rolls. The blends' storage modulus increased with draw ratio, λ, reaching a maximum value for λ = 3–4. The storage modulus of blends containing 30 wt% LCP, and drawn to λ = 4 to 12, was found to increase nearly 50-fold in comparison to neat PEBA (from 18 MPa to almost 1 GPa). The blends' morphology was characterized by dissolving the PEBA matrix, followed by gravimetric and microscopic analysis of the LCP phase. As expected, the average fiber diameter decreased as a function of λ−0.5. The fiber content as a function of λ followed a trend parallel to that of the modulus. Longitudinal and transverse moduli followed the Halpin-Tsai predictions for unidirectional composites. Properties of compression molded specimens prepared from these blends compared favorably with glass fiber composites.  相似文献   

19.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
Ternary blends of polyarylate (PAR) U-Polymer 100, thermotropic liquid crystalline copolyester (LCP) Vectra A950, and a block copolyesterether Hytrel 7246 were investigated in terms of rheological properties, morphology, and mechanical properties. The PAR/Hytrel blend exhibited melting point depression and gave a unique single Tg over the entire range of blend compositions. Addition of Hytrel to the PAR/LCP blend decreased both dynamic viscosity and storage modulus over the normal processing temperature range. Further, it notably reduced the voids between the LCP domains and the matrix, and improved the mechanical properties. The optimum usage level of Hytrel proved to be 2 phr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号