首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrolysis products of uncoated printing and writing paper of MSW   总被引:1,自引:0,他引:1  
Uncoated printing and writing paper, one of the principal waste papers in Taiwan, was pyrolyzed with a thermogravimetric analysis (TGA) reaction system. The pyrolysis experiments were carried out in nitrogen environment at a constant heating rate of 5 K min−1. The gaseous products and the residues were collected at room temperature (300 K) and analyzed by gas chromatography (GC) and elemental analyzer, respectively. The major gaseous products investigated included non-hydrocarbons (H2, CO, CO2, and H2O) and hydrocarbons (C1-3, C4, C5, C6, 1-ring, C10-12, levoglucosan, C13-15, and C16-18). The cumulated masses and the instantaneous concentrations of gaseous products were obtained under the experimental conditions. The yields of non-hydrocarbon gases and of hydrocarbon gases were about 10.46 and 0.49% at 623 K, 33.68 and 0.89% at 700 K, 64.52 and 1.05% at 788 K, and 79.10 and 1.63% at 938 K, respectively. The estimation of the mass of tar, yielded at various pyrolysis temperatures was also made. The results of this study might be useful for the design of pyrolysis process as well as for determining the pyrolysis mechanisms of the uncoated printing and writing paper.  相似文献   

2.
Oil sludge, if unused, is one of the major industrial wastes requiring treatment from petroleum refinery plants or the petrochemical industry. It contains a large amount of combustibles with high heating values. The treatment of waste oil sludge by burning has certain benefits; however, it cannot provide the useful resource efficiently. On the other hand, the conversion of oil sludge to lower molecular weight organic compounds by pyrolysis not only solves the disposal problem but also has the appeal of resource utilization. The major sources of oil sludge include the oil storage tank sludge, the biological sludge, the dissolve air flotation (DAF) scum, the American Petroleum Institute (API) separator sludge and the chemical sludge. In this study, the oil sludge from the oil storage tank of a typical petroleum refinery plant located in northern Taiwan is used as the raw material of pyrolysis. Its heating value of dry basis and low heating value of wet basis are about 10681 kcal kg−1 and 5870 kcal kg−1, respectively. The removal of the moisture from oil sludge significantly increases its heating value. The pyrolysis of oil sludge is conducted by the use of nitrogen as the carrier gas in the temperature range of 380–1073 K and at various constant heating rates of 5.2, 12.8 and 21.8 K min−1. The pyrolytic reaction is significant at 450–800 K and complex. For the sake of simplicity and engineering use, a one‐reaction kinetic model is proposed for the pyrolysis of oil sludge, and is found to satisfactorily fit the experimental data. The activation energy, reaction order and frequency factor of the corresponding pyrolysis reaction in nitrogen for oil sludge are 78.22 kJ mol−1, 2.92 and 9.48 × 105 min−1, respectively. For precise use, the two‐ and three‐reaction models are proposed to describe the pyrolysis results. Among the three models proposed, the three‐reaction model gives the best fit. These results are very useful for the proper design of the pyrolysis system of the oil sludge under investigation. © 2000 Society of Chemical Industry  相似文献   

3.
《Fuel》2005,84(14-15):1884-1892
The main objective of the present study is to investigate the effect of the polymer types in scrap tires on the pyrolysis products. Two different types of scrap tires (passenger car tire, PCT and truck tire, TT) have been pyrolyzed in a fixed bed reactor at the temperatures of 550, 650 and 800 °C under N2 atmosphere. Pyrolysis products (gas, oil and carbon black) obtained from PCT and TT were investigated comparatively. The gaseous products were analyzed by GC–TCD. The psychical and chemical properties of pyrolytic oils were characterized by means of GC–FID, GC–MS, 1H NMR. In addition, boiling point distributions of hydrocarbons in pyrolytic oils were determined by using simulated distillation curves in comparison with commercial diesel fuel. The production of activated carbon from pyrolytic carbon blacks (CBp) was also carried out. The composition of gaseous products from pyrolysis of PCT and TT were similar and they contained mainly hydrocarbons (C1–C4). Pyrolytic oils were found lighter than diesel but heavier than naphtha. The physical properties of pyrolytic oils from PCT and TT were similar at the same temperature. However, the composition of aromatic and sulphur content from pyrolysis of PCT was higher than that of TT. Furthermore, TT derived pyrolytic carbon black was found more suitable for the production of activated carbon due to its low ash content.  相似文献   

4.
The rate of evolution of CH4, CO, CO2, H2, C2 hydrocarbons, and C3 hydrocarbons during pyrolysis of Colorado oil shale between 25 and 900 °C is reported. All experiments were performed nonisothermally using linear heating rates varying from 0.5 to 4.0 °C min?1. Hydrogen is the major noncondensable gas produced by kerogen pyrolysis. The amount of H2 released is influenced, via the shift and Boudouard reactions, by the CO2 evolved from mineral carbonates. Lesser amounts of C1, C2, and C3 hydrocarbons are produced. On the basis of heat content, however, the combined C1 to C3 hydrocarbons contribute twice as much as H2 to the heating value of the pyrolysis gas. The evolution of H2 and CH4 involves processes that are interpreted as a ‘primary’ pyrolysis of the kerogen to generate oil, and a higher temperature ‘secondary’ pyrolysis of the carbonaceous residue. The CO formed is a product of the Boudouard reaction; nearly complete conversion of the carbon residue to CO via this reaction is observed.  相似文献   

5.
The effects of minerals on product compositions from rapid pyrolysis of a Pittsburgh Seam bituminous coal were investigated. Whole, demineralized, and mineral treated samples of pulverized coal were heated in 100 KPa helium or 6.9 MPa hydrogen at 1000 K s?1 to temperatures of up to 1300 K. Yields of char, tar and individual gaseous products were determined as a function of time-temperature conditions. Clays, iron-sulphur minerals, and quartz had few effects on pyrolysis in helium. Calcium minerals decreased yields of hydrocarbon products and increased yields of CO in helium pyrolysis. Calcite and clays decreased yields of CH4 from hydropyrolysis, whereas iron-sulphur minerals had little effect on pyrolysis at 6.9 MPa H2. Whole coal results were similar to demineralized coal results under all conditions.  相似文献   

6.
The pyrolysis of tea waste was studied for determining the main characteristics and quantities of liquid and solid products. Particular investigated process variables were temperature (673-973 K), heating rate (5-700 K min−1) and nitrogen gas flow rate (200-800 cm3 min−1). The maximum oil and char yields are 30.4 (773 K) and 43.3% (673 K), respectively. The liquid and its aliphatic sub-fraction were characterized by elemental analysis, FT-IR, 1H NMR, and GC/MS. The char was characterized with elemental analysis, SEM, BET, and FT-IR techniques. The aliphatic sub-fraction of the obtained bio-oil contains predominantly n-alkanes and alkenes, and branched hydrocarbons. According to the experimental results the liquid products can be used as liquid fuels, whereas the solid product seems to be not suitable for adsorption purposes, due to having low surface areas.  相似文献   

7.
Different polymeric wastes, which include materials from the automobile industry, such as tyres, automobile shredder residues (ASR) and sheet moulding compound (SMC), and materials from municipal solid wastes (MSW), such as cardboard, tetrabrik and plastics (LDPE, PP, PS, PET and PVC), pure and mixed, have been pyrolysed in a 3.5 dm3 autoclave at 500 °C for 30 min in a nitrogen atmosphere. The amount and characteristics of the solid, liquids and gases obtained are presented. The suitability of the different materials for the pyrolysis recycling process is discussed. It is concluded that pyrolysis is a very promising technique for recycling tyres, SMC, one type of ASR (heavy ASR), and LDPE, PP and PS, either pure or mixed; with all of them valuable solid, liquid and gaseous products are obtained in pyrolysis. On the contrary, light ASR, tetrabrik and cardboard do not yield valuable products in the pyrolysis process and therefore their recycling by pyrolysis is not of interest, except as a way of volume reduction. PET and PVC turned out to be troublesome in the pyrolysis experiments; for a proper study of their recycling by pyrolysis other operating conditions and installations are required. © 2002 Society of Chemical Industry  相似文献   

8.
The kinetics of deactivation by coke of a HZSM‐5 zeolite catalyst in the transformation of bioethanol into hydrocarbons has been studied. To attenuate deactivation, the following treatments have been carried out: (i) the zeolite has been subjected to a treatment with alkali to reduce the acid strength of the sites and (ii) it has subsequently been agglomerated into a macro and meso‐porous matrix of bentonite and alumina. The experimental study has been conducted in a fixed bed reactor under the following conditions: temperature, between 300 and 400°C; pressure, 1 atm; space‐time, up to 1.53 (g of catalyst) h (g of ethanol)?1; particle size of the catalyst, between 0.3 and 0.6 mm; feed flowrate, 0.16 cm3 min?1 of ethanol+water and 30 cm3 (NC) min?1 of N2; water content in the feed, up to 75 wt %; time on stream, up to 31 h. The expression for deactivation kinetics is dependent on the concentration of hydrocarbons and water in the reaction medium (which attenuates the deactivation) and, together with the kinetics at zero time on stream, allows the calculation of the evolution with time on stream of the yields and distribution of products (ethylene, propylene and butenes, C1‐C3 paraffins, and C4‐C12). By increasing the temperature in the 300–400°C range the role of ethylene on coke deposition is more significant than that of the other hydrocarbons (propylene, butenes and C4‐C12), which contribute to a greater extent to the formation of coke at 300°C. © 2011 American Institute of Chemical Engineers AIChE J, 58: 526–537, 2012.  相似文献   

9.
Due to the nonhomogeneous characteristics of biomass constituent, it has been known to be difficult to apply directly any simulation work to the pyrolysis of biomass for a precise prediction of gaseous products. In this study, two computation codes (HSC Chemistry for thermodynamic and Sandia PSR for kinetic simulations) were employed, to consider the integrated effects of thermodynamic and kinetic phenomena occurring in biomass pyrolysis on the distribution of gaseous products. The principle of simulation applied in this study was to extract substitutable gas phase compositions from HSC calculations, which were predicted thermodynamically. Then, the gas phase compositions were inputted into the Sandia PSR code to consider the potential constrains of kinetics involving in the pyrolysis and finally to get the distributions of gas products which should be closer to the realistic situation. Palm oil wastes, a local representative biomass, were studied as sample biomass. The gaseous products obtained from HSC calculations were mainly H2, CO2, CO, CH4 and negligible C2+ hydrocarbons. After applying these products into PSR program, the final products developed into H2, CO2, CO, CH4, C2H2, C2H4, C2H6 and C3H8 which are more realistic products in the modern fast pyrolysis.  相似文献   

10.
The thermal and catalytic upgrsding of bio‐oil to liquid fuels was studied at atmospheric pressure in a dual reactor system over HZSM‐5, silica‐alumina and a mixed catalyst containing HZSM‐5 and silica‐alumina. This bio‐oil was produced by the rapid thermal processing of the maple wood. In this work, the intent was to improve the catalyst life. Therefore, the first reactor containing no catalyst facilitated thermal cracking of blo‐oil whereas the second reactor containing the desired catalyst upgraded the thermally cracked products. The effects of process variables such as reaction temperature (350°C to 410°C), space velocity (1.8 to 7.2 h?1) and catalyst type on the amounts and quality of organic liquid product (OLP) were investigated, In the case of HZSM‐5 catalyst, the yield of OLP was maximum at 27.2 wt% whereas the selectivity for aromatic hydrocarbons was maximum at 83 wt%. The selectivities towards aromatics and aliphatic hydrocarbons were highest for mixed and silica‐alumina catalysts, respectively. In all catalyst cases, maximum OLP was produced at an optimum reaction temperature of 370°C in both reactors, and at higher space velocity. The gaseous product consisted of CO and CO2, and C1‐C6 hydrocarbons, which amounted to about 20 to 30 wt% of bio‐oil. The catalysts were deactivated due to coking and were regenerated to achieve their original activity.  相似文献   

11.
Nanoscale Ce‐ZrO2, synthesized by cationic surfactant‐assisted method, has useful partial oxidation activity to convert palm fatty acid distillate (PFAD; containing C16–C18 compounds) to hydrogen‐rich gas with low carbon formation problem under moderate temperatures. At 1123 K with the inlet O/C ratio of 1.0, the main products from the reaction are H2, CO, CO2, and CH4 with slight formations of gaseous high hydrocarbons (i.e., C2H4, C2H6, and C3H6), which could all be eliminated by applying higher O/C ratio (above 1.25) or higher temperature (1173 K). Compared with the microscale Ce‐ZrO2 synthesized by conventional coprecipitation method, less H2 production with relatively higher C2H4, C2H6, and C3H6 formations are generated from the reaction over microscale Ce‐ZrO2. The better reaction performances of nanoscale Ce‐ZrO2 are linearly correlated with its higher specific surface area as well as higher oxygen storage capacity and lattice oxygen mobility, according to the reduction/oxidation measurement and 18O/16O isotope exchange study. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

12.
A Si-C-N ceramic was synthesized by pyrolysis of the polysilazane Ceraset® PSZ 10 and PSZ 20. The preceramic polymer was crosslinked by gradual heating up to 300 °C and pyrolyzed at temperatures from 1000 °C to 1500 °C in flowing Ar- and N2-containing atmospheres, respectively. The influence of the pyrolysis temperature and the nitrogen partial pressure (pN2) on the high-temperature stability, phase reactions and crystallization behavior was investigated by STA, XRD and SEM/EDX. Additionally, gaseous pyrolysis- and reaction products were analyzed by on-line mass spectrometry. The CALPHAD (CALculation of PHAse Diagrams) method was used to calculate pyrolysis products and high-temperature phase stabilities as a function of temperature and pAr/pN2. It is shown that the observed experimental findings are quantitatively confirmed and explained by the modelling.  相似文献   

13.
Gel permeation chromatography (GPC) and solid‐state 13C‐NMR techniques were used to analyze the structural changes of poly(vinyl chloride) (PVC) in blends of a low‐density polyethylene (LDPE) and PVC during melt blending. The GPC results showed that the weight‐average molecular weight (Mw) of PVC increased with LDPE content up to 13.0 wt % and then decreased at a LDPE content of 16.7 wt %, whereas the number‐average molecular weight remained unchanged for all of LDPE contents used. The 13C‐NMR results suggest that the increase in Mw was associated with the formation of a LDPE‐g‐PVC structure, resulting from a PVC and LDPE macroradical cross‐recombination reaction during melt blending. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3167–3172, 2004  相似文献   

14.
Five German hard coals of 6–36 wt% volatile matter yield (maf) were pyrolysed at pressures up to 10 MPa, using two different apparatuses, which mainly differ in the heating rates. One consists of a thermobalance where a coal sample of ≈ 1.5 g is heated at a rate of 3 K min ?1 under a gas flow of 3 I min?1. The other apparatus is constructed for rapid heating (102?103 K s?1) of a small sample of ≈10 mg of finely-ground coal distributed as a layer between the folded halfs of a stainless-steel screen, heated by an electric current. The product gas composition was determined by quantitatively analysing for H2, CH4, C2H4, C2H6, CO, CO2 and H2O. The amounts of tar and char were measured by weighing. The heating rate, pressure and gas atmosphere were varied. Under an inert gas atmosphere, high heating rates result in slightly higher yields of liquid products, e.g. tar. The yields of light hydrocarbon gases remain the same. With increasing pressure, the thermal cracking of tar is intensified resulting in high yields of char and light hydrocarbon gases. Under H2, pyrolysis is influenced strongly at elevated pressure. Additional amounts of highly aromatic products are released by hydrogenation of the coal itself, particularly between 500 and 700°C. This reaction is less effective at higher heating rates because of the shorter residence time and diffusion problems of H2. The yield of light gaseous compounds CH4 and C2H6 increases markedly under either heating condition owing to gasification of the reactive char.  相似文献   

15.
The dehydrogenation of methane on MoO3 supported on various oxides has been investigated under non-oxidizing conditions in a fixed bed, continuous flow reactor. Detailed measurements were performed with MoC3/SiO2. The reaction of methane was observed above 923 K after a significant time lag, when a partial reduction of Mo6+ occurred, the reduced phase being characterized by X-ray photoelectron spectroscopy (XPS). The initial gaseous products are CO2, H2O, H2 and CO. But this stage is followed by the dehydrogenation of methane and coupling of hydrocarbon fragments to various hydrocarbons. A possible pathway of the formation of benzene, the main product of reaction with selectivities ranging from 26 to 56%, is suggested.  相似文献   

16.
The rate of product formation as well as detailed product composition were measured in the rapid pyrolysis of a 1.3-cm cylindrical pellet of lignin, a major component of biomass. Volume heating by dielectric-loss microwave heating resulted in rapid weight loss with an apparent rate coefficient of 1–5 min?1. Char yield was surprisingly low (33%) owing to the rapid heating rate and high temperature of the pellet. Total gas yield was 38%, of which 12% were simple hydrocarbons and H2 (both weight percent, of original lignin). Product composition showed extensive secondary reaction at high temperatures evidenced by the significant yields of C2H2,H2, and condensed aromatics as well as the typical lignin cracking products such as phenols. Poor coupling of microwave energy to lignin required large power settings in order to initiate reaction. Once initiated, the reaction rate was difficult to control because of the exothermic nature of the reactions. Additives of a suitable composition to increase coupling may be a possible solution to this problem and may result in more favorable economics.  相似文献   

17.
Radiation‐induced graft polymerization of low‐density polyethylene with N‐vinylpyrrolidone, LDPE‐g‐PNVP, was used as a starting material for the synthesis of polyfunctionally substituted heterocyclic products. Thus, LDPE‐g‐PNVP reacts with ylidenemalononitrile derivatives to give the Michael addition products. In multistep reaction, LDPE‐g‐PNVP reacts with N,N‐dimethylformamide dimethyl acetal (DMFDMA), hydrazine hydrate and malononitrile, respectively, to give a hydropyrrolopyridazine derivative. The latter could also be prepared via the reaction of LDPE‐g‐PNVP with DMFDMA, followed by treating with cyanoacetohydrazide. Also, LDPE‐g‐PNVP reacts with malononitrile to give an adduct product, dimer malononitrile derivative 13. The latter reacts with sulfur element to afford the thiophene derivative. Furthermore, this adduct reacts with hydrazine hydrate to isolate the original starting material, LDPE‐g‐PNVP, and aminopyridine derivative. The resulted films were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H‐NMR) mass spectroscopy, elemental analysis, swelling behavior, and electron scanning microscope. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2963–2970, 1999  相似文献   

18.
Effects of the properties of polymers and blowing liquids on the macrostructure and microstructure of foamed products in a dynamic decompression and cooling (DDC) process have been investigated. When the homogeneous solutions, prepared by the heating and mixing of the mixtures of low‐density polyethylenes (LDPE) and chlorinated hydrocarbons under nitrogen (N2), go through a rapid pressure quench above the boiling point of the liquids, bubbles nucleate out through liquid/gas phase separation and grow through diffusion and expansion of the gaseous phases. Foam cell stabilization is improved by polymers exhibiting higher extensional hardening and blowing liquids possessing higher latent heat of evaporation. Resultant LDPE foams have mixed cell structures: in the skin parts, more cells are closed, but more cells are open in the core parts. In the polymer matrix, micromorphologies of granules, fibers, and fiber networks, with oriented lamellae, are observed. The formation of these complex structures is described in terms of phase and deformation behaviors of the solutions.  相似文献   

19.
利用微波化学试验装置研究了油页岩微波热解过程中挥发分析出特性, 考察了微波功率、热解温度、不同热解温度阶段和催化剂对气体组成的影响。结果表明:微波加热能够提高油页岩热解气中H2、CO和C2H4的析出, 降低CO2的析出;50%(1600W)微波功率时烃类的析出量最大;在150~350℃的低温阶段热解气的析出量大, 主要由吸附气体的释放, 不稳定支链和基团的分解产生;温度升高, 气态产物的析出主要由脱氢、芳构化、缩聚和自由基反应产生。催化剂促进了气体的析出, 但不同类型催化剂对油页岩热解气组成的影响不同, 分子筛的吸附作用促进二次分解和缩聚反应;黏土类催化剂在质子酸作用下促进有机质催化裂解加氢反应, 加快断链和基团的稳定;金属类催化剂是强吸波性介质, 能够提高升温速率, 促进热解反应, 其次促进氢自由基的产生和转移。  相似文献   

20.
Ethane, ethylene, acetylene, propane and neopentane have been pyrolyzed at 1173 K, and methane at 1372 K in a flow system, and the volatile pyrolysis products analyzed. Eleven aromatic hydrocarbons, containing 14 or fewer carbon atoms, accounted for 98 + % of the liquid products recovered in each case. Benzene was the main product, followed by naphthalene. No compounds with branched chains or multiple substituents were present, and compounds containing even numbers of carbons comprised 93–99% of each mixture. Acetylene was a major component of the gaseous effluent from each of the initial hydrocarbons. The effect of temperature on the composition of the gaseous effluent during pyrolysis of methane, ethane and ethylene was determined. Carbon film deposition from methane commenced at about 1273 K; from ethane at 1015 K and from ethylene at 1100 K, in each instance coinciding with the appearance of acetylene in the effluent. As the temperature was raised, at first the increase in the rate of carbon deposition closely followed the increase in the concentration of acetylene in the effluent. It is proposed that acetylene may be a common factor in the pyrolysis of aliphatic hydrocarbons, perhaps acting as the precursor of both surface carbon and aromatic hydrocarbons by a process of head-to-tail linkage of two-carbon units at active surface sites to form chains that then undergo dehydrogenation to carbon or cyclization and desorption as aromatic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号