首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low earth orbit (LEO) satellite communication systems perform frequent intersatellite handovers for both fixed and mobile users. This paper proposes a satellite selection scheme for new/handover call requests when two or more satellites can be seen simultaneously. Each satellite in this scheme has a non-uniform transmitter antenna gain according to its relative position inside the coverage area. The antenna gain is proportional to the residual distance in the satellite's direction of movement and it compensates for the difference in path losses between satellite links. The residual distance distribution of the selected satellite and the mean number of intersatellite handovers during a call connection are calculated and compared with the results based on conventional methods. The proposed scheme can reduce the intersatellite handover call attempt rate without increasing system load and terminal complexity. Furthermore, this scheme can be extended to reduce both intersatellite and interbeam handover call attempt rates in a multiple spot beam environment. Especially, the average number of intersatellite and interbeam handovers during a call can be significantly reduced by using a hybrid algorithm with the proposed non-uniform power transmission scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a quantitative analysis by computer simulation of the active set update (ASU) handover algorithm for a shadowed low earth orbit (LEO) land mobile satellite (LMS) environment. As a precursor to the handover analysis, the mutual visibility statistics for a 66 satellite polar and 48 satellite rosette-type constellation are presented. These results show the statistical nature of the levels of satellite diversity and mobile-to-satellite elevation angles (to the highest satellite) within each network and also indicate the influence of the channel characteristics on the handover strategy. A two-state Markov modulated channel model is assumed in the handover analysis, and this enables the assessment of increased levels of power and time hysteresis on the quality of service and network signalling load in a shadowed land mobile satellite environment. In particular, attention is given to the different modes of ASU operation for hard handover, switch diversity and soft handover.  相似文献   

3.
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of service (QoS) guarantees. Due to the scarcity of resources in LEO satellite networks, a connection admission control (CAC) technique becomes important to achieve this connection-level QoS for the spotbeam handovers. In this paper, a geographical connection admission control (GCAC) algorithm is introduced, which estimates the future handover blocking performance of a new call attempt based on the user location database, in order to decrease the handover blocking. Also, for its channel allocation scheme, an adaptive dynamic channel allocation (ADCA) scheme is introduced. By simulation, it is shown that the proposed GCAC with ADCA scheme guarantees the handover blocking probability to a predefined target level of QoS. Since GCAC algorithm utilizes the user location information, performance evaluation indicates that the quality of service (QoS) is also guaranteed in the non-uniform traffic pattern.  相似文献   

4.
QoS Handover Management in LEO/MEO Satellite Systems   总被引:4,自引:0,他引:4  
Low Earth Orbit (LEO) satellite networks are foreseen to complement terrestrial networks in future global mobile networks. Although space segment topology of a LEO network is characterized by periodic variations, connections of mobile stations (MSs) to the satellite backbone network alter stochastically. As a result the quality of service delivered to users may degrade. Different procedures have been proposed either as part of a resource allocation mechanism or as part of an end-to-end routing protocol to manage transitions of MSs from one satellite to another (handover). All of these techniques are based on the prioritization of requested handovers to ease network operation and therefore enhance provision of service. This paper proposes a new handover procedure that exploits all geometric characteristics of a satellite-to-MS connection to provide an equable handover in systems incorporating onboard processing satellites. Its performance is evaluated by simulations for a variety of satellite constellations to prove its general applicability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
低轨卫星移动通信系统接入方案   总被引:15,自引:0,他引:15       下载免费PDF全文
在低轨卫星移动通信系统中,由于卫星和移动用户间的相对运动使得呼叫切换频繁发生.为了降低星间切换请求到达率,减小系统切换开销,本文在距离优先接入方案基础上进一步提出了两种接入策略:覆盖时间优先方案和仰角加权的覆盖时间优先方案.构造了非均匀分布全球话务密度模型.并参照某实际系统参数,对不同接入方案准则下的全球话务服务进行了系统仿真,得到了相应的系统性能参数.  相似文献   

6.
In the modern world of telecommunications, the concept of wireless global coverage is of the utmost importance. However, real global coverage can only be achieved by satellite systems. Until recently, the satellites were in geostationary orbit and their high altitude could not allow real‐time communication such as cellular networks. The development of LEO satellite networks seems to overcome this limit. However, LEO satellite systems have specific characteristics that need to be taken into account. In the same manner, the TCP/IP standard was developed for terrestrial network. The need is then to come up with a solution that would permit the use of TCP/IP on LEO satellite networks without losing too many packets. The idea is to develop a routing algorithm that maximizes the RTT delays compared to the TCP timer granularity. For that matter, we use an FSA‐based link assignment that simulates the satellite constellation as a fixed network for a predetermined time interval. In this configuration, the problem becomes a static routing problem where an algorithm can find the best solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Next generation communication networks incorporate Land Mobile Satellite (LMS) systems in order to provide greater areas of coverage and higher throughput for specific applications. Cooperation between satellite communication networks and terrestrial relays is or increasing the system’s performance and availability. In this paper, the outage performance of a cooperative hybrid satellite and terrestrial system configuration is analytically evaluated assuming that the satellite links suffer from shadowed Rician fading, while the terrestrial link suffers from the Nakagami-m fading. Two cooperative relaying strategies are examined and the final formulas for the calculation of the outage probability are given. Moreover, a block diagram for the generation of time series for the reliable simulations of the outage probability of the cooperative hybrid land mobile satellite systems is given. The theoretical results and the simulation results almost coincide. Moreover, extended numerical results investigate the impact, of different shadowing conditions and more generally of the satellite links elevation angles, on the overall cooperative LMS system performance.  相似文献   

8.
超密集低地球轨道卫星通信网络能弥补传统地面网络频谱资源稀缺、覆盖范围有限的不足,有潜力提供全球大规模接入的高速率服务。由于卫星的高速移动性,卫星通信对天线性能,如波束控制能力和天线增益等,也提出了更为严苛的要求。因此,对一种新型的超材料天线——可重构全息超表面(reconfigurable holographic surface,RHS)辅助卫星通信展开了研究。RHS采用全息原理对超材料单元进行电控,从而实现波束成形。基于 RHS 的硬件结构和全息工作原理,提出了一种 RHS 辅助多卫星通信方案,该方案同时考虑卫星跟踪和数据传输。同时,设计了全息波束成形优化算法以最大化和速率。仿真结果验证了所提方案的有效性并表明了相较于传统相控阵天线,RHS提供了一种成本效益更高的卫星通信支持方式。  相似文献   

9.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

10.
Low Earth Orbiting (LEO) satellite networks with on-board asynchronous transfer mode (ATM) switches hold the promise of offering an economically viable extension of terrestrial ATM systems by providing connectivity to areas where existing terrestrial networks are either infeasible or impractical. Network management in ATM LEO satellite networks is typically performed by the Network Control Center (NCC). The main contribution of this paper is to propose a network management system configuration with a stand-by solution and to describe an experimental Satellite Management Information Base (SMIB) that we have developed for implementation in ATM LEO satellite networks.  相似文献   

11.
Terrestrial cellular networks and mobile satellite systems are expected to converge towards a future integrated satellite/terrestrial mobile communication network. Besides a system globalization, the integration of terrestrial and satellite mobile systems will lead to the unloading of the fixed part of the mobile network. This paper proposes an integrated satellite/terrestrial mobile communication system and evaluates its performance in terms of the blocking probability for new call attempts, the call dropping probability and the probability of unsuccessful call. This communication system was simulated and its performence compared with that of a stand-alone terrestrial mobile system. In the terrestrial part of the system we have considered fixed channel allocation (FCA) and dynamic channel allocation (DCA) techniques. Satellite channels can have equal or lower priority compared to terrestrial channels. The improvement of the system performance by means of satellite-to-terrestrial handovers was also estimated.  相似文献   

12.
Low earth orbit (LEO) satellite systems gained considerable interest towards the end of the previous decade by virtue of some of the appealing features that are endowed with, such as low propagation delay and the ability to communicate with handheld terminals. However, after the limited commercial success of the first networks of this kind, future satellite networks are now conceived as complementary rather than competitive to terrestrial networks. In this paper, we focus on one of the most influential factors in system performance, that is, the handover of a call. First, we provide a succinct review of the handover strategies that have been proposed in the literature. Then we propose two different satellite handover techniques for broadband LEO satellite systems that capitalize upon the satellite diversity that a system may provide. The proposed schemes cater for multimedia traffic and are based on the queuing of handover requests. Moreover, a deallocation scheme is also proposed according to which capacity reservation requests are countermanded when the capacity that they strive to reserve is unlikely to be used. Simulation studies further document and confirm the positive characteristics of the proposed handover schemes.  相似文献   

13.
Type-II hybrid ARQ is applied to a shadowed Rician fading low earth-orbiting (LEO) satellite-based spread slotted ALOHA communication channel. In particular it is found to be effective in combating heavy shadowing  相似文献   

14.
低轨(LEO)卫星网络作为地面网络的重要补充,是未来天地一体化网络的重要组成部分。由于LEO卫星的高移动速度以及星地通信的大传播距离造成了高传播时延,因此需要新的针对LEO卫星星地通信背景的上行链路的定时提前量(TA)的计算策略。本文基于LEO卫星的星地通信场景,介绍了TA及其在协议中的规定,并针对LEO卫星的特点,提出一种LEO卫星通信的定时提前计算方法。通过仿真分析验证了所提方案的有效性,为LEO卫星星地通信系统的设计提供了参考。  相似文献   

15.
This paper extends previous research efforts related to the simulation performance modelling and analysis of satellite communication networks. Specifically, the use of low earth orbit (LEO) satellite networks for personal communications is examined. Six different satellite constellation configurations are investigated in a packet‐switched operating environment. Performance metrics examined are the end‐to‐end packet delay and the utilization of satellite channels in the dynamic environment. Realistic and accurate models of the physical satellite network and its terrestrial transmitters require that numerous operating characteristics and assumptions be specified. These are based on proposed design requirements of commercial systems, such as Iridium. Via the use of simulation, we show the relative delay and utilization performance of differing satellite network architectures. From these simulation models, mathematical metamodels are derived for the system delays. These innovative models are used to predict the delay performance of different network architectures not previously simulated. Comparison of these metamodels with simulation results show that metamodels provide an accurate means for performance prediction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Following a recent upgrade, the Digital Video Broadcasting—Return Channel Satellite (DVB‐RCS) standard sets up to support terminal mobility. In this scenario, integration with terrestrial systems becomes a primary concern to ensure network connectivity in urban areas. This article proposes an integrated satellite–terrestrial architecture for the provision of broadband services onboard high‐speed trains, in which terrestrial cellular networks are seen as viable gap‐fillers for discontinuous satellite coverage. We derive an analytical model of the hybrid DVB‐RCS‐cellular system by exploiting analogies between the mobility pattern predictability of LEO constellations and that of high‐speed trains. Terminals whose QoS cannot be guaranteed by the satellite segment are proposed to temporarily divert the connections towards the terrestrial infrastructure, where available. Using an iterative approach based on the Erlang fixed‐point approximation, we show performance improvements with respect to stand‐alone satellite systems in terms of handover failure probability and overall resource utilization. The analytical model is also validated via our ns2‐based DVB‐RCS packet‐level simulator. Detailed modelling of synchronization and signalling mechanisms confirms the accuracy of the analytical results, and shows that topology and mobility information can contribute to refine radio resource utilization optimality when used jointly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
中低轨卫星之间跨层激光链路的无缝切换直接决定了双层卫星光网络的稳定性.异步切换方法会导致网络拓扑频繁重构,而集中同步切换将造成两层间连接中断,网络运行状态失控.为此,本文提出了中低轨卫星星座激光链路的二次同步切换方法,在保证中低轨道卫星连通的基础上,可降低网络拓扑重构频率.研究了整数周期比的中轨道和低轨道卫星空间位置特性,建立了中低轨卫星星座构形二阶非球摄动模型,确定了中低轨道之间轨道周期比为3的双层卫星星座构形.按连接和切换顺序将该星座构形中跨层激光链路分为两组,以相对周期的1/4为基准,每次令其中一组同步切换,通过交替完成切换.研究结果表明,二次同步切换方法使得网络拓扑重构频率降低到链路切换频率的1/7,比集中切换方法在网络平均时延方面降低了30ms.  相似文献   

18.
With the advent of the fifth generation of mobile radio communication by 2020, there will be many challenges such as increasing service demand with low delay in providing billions of end users called the satellite mobile users. It is expected that terrestrial communication systems will be faced with a dense network having many small cells anywhere and anytime. Therefore, there are some remote regions in the world where terrestrial systems cannot provide any services to end users. Furthermore, because of lack of spectral resources, it is very important that the spectrum is shared between satellite systems and terrestrial equipment by a suitable solution to interference management. In this paper, a heterogeneous satellite network that includes low earth orbit (LEO) satellite constellation and terrestrial equipment is proposed to provide low delay services. In this type of structure, interference management based on transmission power control between LEO satellite systems and mobile users is very important for obtaining high throughput. Moreover, in order to mitigate interference, transmission power control is shown based on noncooperative Stackelberg game under many subgames through pricing‐based algorithm and convex optimization method. Finally, the simulation results show that the performance of this study's system model will be improved through the proposed algorithm.  相似文献   

19.
Code division multiple access (CDMA) has been proposed for personal communications networks for both terrestrial and satellite links. We analyze the performance of the downlink (i.e., the base-to-mobile link) of a low earth orbiting (LEO) mobile satellite channel. An important characteristic of this fading channel is that the desired signal and the multiple access interference from all spot beams of the corresponding satellite fade simultaneously. In this respect, the satellite downlink is also different from its terrestrial counterpart. A two-state fading channel model is considered. In the nonshadowed state, the signal envelope is characterized by Rician statistics and in the shadowed state by the Rayleigh statistics. We analyze the probability of error performance when coherent detection, diversity, spectrum sharing by two service providers, and forward error correction are employed  相似文献   

20.
卫星通信是保障机载平台远程飞行的主要通信手段。低轨卫星通信具有传输损耗小、传输时延短、卫星发射灵活、能全球覆盖等优点,已成为机载卫星通信领域的研究热点。梳理了国内外机载低轨卫星通信技术发展历程,开展了机载低轨卫星通信应用分析,重点从相控阵天线、信号同步、编码调制、接入与切换等方面阐述了机载低轨卫星通信需要解决的关键技术,探讨了机载低轨卫星通信发展趋势,可为机载低轨卫星通信系统建设应用提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号