首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, an efficient and accurate meshless natural neighbour Petrov–Galerkin method (NNPG) is proposed to solve elasto‐static problems in two‐dimensional space. This method is derived from the generalized meshless local Petrov–Galerkin method (MLPG) as a special case. In the NNPG, the local supported trial functions are constructed based on the non‐Sibsonian interpolation and test functions are taken as the three‐node triangular FEM shape functions. The local weak forms of the equilibrium equation and the boundary conditions are satisfied in local polygonal sub‐domains. These sub‐domains are constructed with Delaunay tessellations and domain integrals are evaluated over included Delaunay triangles by using Gaussian quadrature scheme. As this method combines the advantages of natural neighbour interpolation with Petrov–Galerkin method together, no stiffness matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Several numerical examples are presented and the results show the presented method is easy to implement and very accurate for these problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
In the present paper a systematic development of higher order accurate time stepping schemes which exactly conserve total energy as well as momentum maps of underlying finite‐dimensional Hamiltonian systems with symmetry is shown. The result of this development is the enhanced Galerkin (eG) finite element method in time. The conservation of the eG method is generally related to its collocation property. Total energy conservation, in particular, is obtained by a new projection technique. The eG method is, moreover, based on objective time discretization of the used strain measure. This paper is concerned with particle dynamics and semi‐discrete non‐linear elastodynamics. The related numerical examples show good performance in presence of stiffness as well as for calculating large‐strain motions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The transient response of a tube subjected to impact is described through Fourier–Galerkin and Chebyshev collocation multidomain discretizations of the equations of linear elasticity. The trapezoidal rule is used for time integration. For each Fourier mode the spatial collocation derivative operators are represented by matrices, and the subdomains are patched by natural and essential conditions. At each time level the resulting governing matrix equation is reduced by two consecutive block Gaussian eliminations, so that an equation for the complex Fourier coefficients at the subdomain corners has to be solved. Back‐substitution gives the coefficients at all other collocation points. An inverse discrete Fourier transform generates, at optional time levels, the three components of the displacement field. Through this method the long‐term evolution of the field may be calculated, provided the impact time is long enough. The time history as represented by computed contour plots has been compared with photos produced by holographic interferometry. The agreements are satisfactory. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A potentially powerful numerical method for solving certain boundary value problems is developed. The method combines the simplicity of orthogonal collocation with the versatility of deformable finite elements. Bicubic Hermite elements with four degrees-of-freedom per node are used. A subparametric transformation permits the precise positioning of the collocation points for maximum accuracy as well as a unique representation of irregular boundaries. It is shown that by taking advantage of the boundary conditions, a minimum number of collocation points can be used. The method is particularly suitable for potential and mass transport problems where a C1 continuous solution is required. In contrast to the Galerkin approach, it does not require the evaluation of basis function products and numerical integration, also the coefficient matrix contains only about half as many non-zero terms as the corresponding Galerkin coefficient matrix. This results in approximately a 90 per cent reduction in formulation and a 50 per cent reduction in solution operation, as compared with the Galerkin finite element method, for this type of problem. Examples show that the accuracy of the collocation solution is as good as or better than that of the Galerkin solution.  相似文献   

5.
A reproducing kernel particle method with built‐in multiresolution features in a very attractive meshfree method for numerical solution of partial differential equations. The design and implementation of a Galerkin‐based reproducing kernel particle method, however, faces several challenges such as the issue of nodal volumes and accurate and efficient implementation of boundary conditions. In this paper we present a point collocation method based on reproducing kernel approximations. We show that, in a point collocation approach, the assignment of nodal volumes and implementation of boundary conditions are not critical issues and points can be sprinkled randomly making the point collocation method a true meshless approach. The point collocation method based on reproducing kernel approximations, however, requires the calculation of higher‐order derivatives that would typically not be required in a Galerkin method, A correction function and reproducing conditions that enable consistency of the point collocation method are derived. The point collocation method is shown to be accurate for several one and two‐dimensional problems and the convergence rate of the point collocation method is addressed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an isogeometric collocation method for a computationally expedient random field discretization by means of the Karhunen-Loève expansion. The method involves a collocation projection onto a finite-dimensional subspace of continuous functions over a bounded domain, basis splines (B-splines) and nonuniform rational B-splines (NURBS) spanning the subspace, and standard methods of eigensolutions. Similar to the existing Galerkin isogeometric method, the isogeometric collocation method preserves an exact geometrical representation of many commonly used physical or computational domains and exploits the regularity of isogeometric basis functions delivering globally smooth eigensolutions. However, in the collocation method, the construction of the system matrices for a d-dimensional eigenvalue problem asks for at most d-dimensional domain integrations, as compared with 2d-dimensional integrations required in the Galerkin method. Therefore, the introduction of the collocation method for random field discretization offers a huge computational advantage over the existing Galerkin method. Three numerical examples, including a three-dimensional random field discretization problem, illustrate the accuracy and convergence properties of the collocation method for obtaining eigensolutions.  相似文献   

7.
This paper discusses the coupling of finite element and fast boundary element methods for the solution of dynamic soil–structure interaction problems in the frequency domain. The application of hierarchical matrices in the boundary element formulation allows considering much larger problems compared to classical methods. Three coupling methodologies are presented and their computational performance is assessed through numerical examples. It is demonstrated that the use of hierarchical matrices renders a direct coupling approach the least efficient, as it requires the assembly of a dynamic soil stiffness matrix. Iterative solution procedures are presented as well, and it is shown that the application of such schemes to dynamic soil–structure interaction problems in the frequency domain is not trivial, as convergence can hardly be achieved if no relaxation procedure is incorporated. Aitken's Δ2‐method is therefore employed in sequential iterative schemes for the calculation of an optimized interface relaxation parameter, while a novel relaxation technique is proposed for parallel iterative algorithms. It is demonstrated that the efficiency of these algorithms strongly depends on the boundary conditions applied to each subdomain; the fastest convergence is observed if Neumann boundary conditions are imposed on the stiffest subdomain. The use of a dedicated solver for each subdomain hence results in a reduced computational effort. A monolithic coupling strategy, often used for the solution of fluid–structure interaction problems, is also introduced. The governing equations are simultaneously solved in this approach, while the assembly of a dynamic soil stiffness matrix is avoided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Finite element formulations for second‐order elliptic problems, including the classic H1‐conforming Galerkin method, dual mixed methods, a discontinuous Galerkin method, and two primal hybrid methods, are implemented and numerically compared on accuracy and computational performance. Excepting the discontinuous Galerkin formulation, all the other formulations allow static condensation at the element level, aiming at reducing the size of the global system of equations. For a three‐dimensional test problem with smooth solution, the simulations are performed with h‐refinement, for hexahedral and tetrahedral meshes, and uniform polynomial degree distribution up to four. For a singular two‐dimensional problem, the results are for approximation spaces based on given sets of hp‐refined quadrilateral and triangular meshes adapted to an internal layer. The different formulations are compared in terms of L2‐convergence rates of the approximation errors for the solution and its gradient, number of degrees of freedom, both with and without static condensation. Some insights into the required computational effort for each simulation are also given.  相似文献   

9.
A high‐order local transmitting boundary to model the propagation of acoustic or elastic, scalar or vector‐valued waves in unbounded domains of arbitrary geometry is proposed. It is based on an improved continued‐fraction solution of the dynamic stiffness matrix of an unbounded medium. The coefficient matrices of the continued‐fraction expansion are determined recursively from the scaled boundary finite element equation in dynamic stiffness. They are normalised using a matrix‐valued scaling factor, which is chosen such that the robustness of the numerical procedure is improved. The resulting continued‐fraction solution is suitable for systems with many DOFs. It converges over the whole frequency range with increasing order of expansion and leads to numerically more robust formulations in the frequency domain and time domain for arbitrarily high orders of approximation and large‐scale systems. Introducing auxiliary variables, the continued‐fraction solution is expressed as a system of linear equations in iω in the frequency domain. In the time domain, this corresponds to an equation of motion with symmetric, banded and frequency‐independent coefficient matrices. It can be coupled seamlessly with finite elements. Standard procedures in structural dynamics are directly applicable in the frequency and time domains. Analytical and numerical examples demonstrate the superiority of the proposed method to an existing approach and its suitability for time‐domain simulations of large‐scale systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We consider the efficient numerical solution of the three‐dimensional wave equation with Neumann boundary conditions via time‐domain boundary integral equations. A space‐time Galerkin method with C‐smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The Element free Galerkin method, which is based on the Moving Least Squares approximation, requires only nodal data and no element connectivity, and therefore is more flexible than the conventional finite element method. Direct imposition of essential boundary conditions for the element free Galerkin (EFG) method is always difficult because the shape functions from the Moving Least Squares approximation do not have the delta function property. In the prior literature, a direct collocation of the fictitious nodal values & u circ; used as undetermined coefficients in the MLS approximation, u h (x) [u h (x)=Φ·& u circ;], was used to enforce the essential boundary conditions. A modified collocation method using the actual nodal values of the trial function u h (x) is presented here, to enforce the essential boundary conditions. This modified collocation method is more consistent with the variational basis of the EFG method. Alternatively, a penalty formulation for easily imposing the essential boundary conditions in the EFG method with the MLS approximation is also presented. The present penalty formulation yields a symmetric positive definite system stiffness matrix. Numerical examples show that the present penalty method does not exhibit any volumetric locking and retains high rates of convergence for both displacements and strain energy. The penalty method is easy to implement as compared to the Lagrange multiplier method, which increases the number of degrees of freedom and yields a non-positive definite system matrix.  相似文献   

12.
An adaptive scheme is proposed in which the domain is split into two subdomains. One subdomain consists of regions where the discretization is refined with an h‐adaptive approach, whereas in the other subdomain node relocation or r‐adaptivity is used. Through this subdivision the advantageous properties of both remeshing strategies (accuracy and low computer costs, respectively) can be exploited in greater depth. The subdivision of the domain is based on the formulation of a desired element size, which renders the approach suitable for coupling with various error assessment tools. Two‐dimensional linear examples where the analytical solution is known illustrate the approach. It is shown that the combined rh‐adaptive approach is superior to its components r‐ and h‐adaptivity, in that higher accuracies can be obtained compared to a purely r‐adaptive approach, while the computational costs are lower than that of a purely h‐adaptive approach. As such, a more flexible formulation of adaptive strategies is given, in which the relative importance of attaining a pre‐set accuracy and speeding‐up the computational process can be set by the user. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
We describe an algorithm which generates tetrahedral decomposition of a general solid body, whose surface is given as a collection of triangular facets. The principal idea is to modify the constraints in such a way as to make them appear in an unconstrained triangulation of the vertex set à priori. The vertex set positions are randomized to guarantee existence of a unique triangulation which satisfies the Delaunay empty‐sphere property. (Algorithms for robust, parallelized construction of such triangulations are available.) In order to make the boundary of the solid appear as a collection of tetrahedral faces, we iterate two operations, edge flip and edge split with the insertion of additional vertex, until all of the boundary facets are present in the tetrahedral mesh. The outcome of the vertex insertion is another triangulation of the input surfaces, but one which is represented as a subset of the tetrahedral faces. To determine if a constraining facet is present in the unconstrained Delaunay triangulation of the current vertex set, we use the results of Rajan which re‐formulate Delaunay triangulation as a linear programming problem. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The objective of the present work is to propose a new adaptive wavelet‐Galerkin method based on the lowest‐order hat interpolation wavelets. The specific application of the present method is made on the one‐dimensional analysis of thin‐walled box beam problems exhibiting rapidly varying local end effects. Higher‐order interpolation wavelets have been used in the wavelet‐collocation setting, but the lowest‐order hat interpolation is applied here first and a hat interpolation wavelet‐based Galerkin method is newly formulated. Unlike existing orthogonal or biorthogonal wavelet‐based Galerkin methods, the present method does not require special treatment in dealing with general boundary conditions. Furthermore, the present method directly works with nodal values and does not require special formula for the evaluation of system matrices. Though interpolation wavelets do not have any vanishing moment, an adaptive scheme based on multi‐resolution approximations is possible and a preconditioned conjugate gradient method can be used to enhance numerical efficiency. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A two‐level nonoverlapping Schwarz algorithm is developed for the Stokes problem. The main feature of the algorithm is that a mixed problem with both velocity and pressure unknowns is solved with a balancing domain decomposition by constraints (BDDC)‐type preconditioner, which consists of solving local Stokes problems and one global coarse problem related to only primal velocity unknowns. Our preconditioner allows to use a smaller set of primal velocity unknowns than other BDDC preconditioners without much concern on certain flux conditions on the subdomain boundaries and the inf–sup stability of the coarse problem. In the two‐dimensional case, velocity unknowns at subdomain corners are selected as the primal unknowns. In addition to them, averages of each velocity component across common faces are employed as the primal unknowns for the three‐dimensional case. By using its close connection to the Dual–primal finite element tearing and interconnecting (FETI‐DP algorithm) (SIAM J Sci Comput 2010; 32 : 3301–3322; SIAM J Numer Anal 2010; 47 : 4142–4162], it is shown that the resulting matrix of our algorithm has the same eigenvalues as the FETI‐DP algorithm except zero and one. The maximum eigenvalue is determined by H/h, the number of elements across each subdomains, and the minimum eigenvalue is bounded below by a constant, which does not depend on any mesh parameters. Convergence of the method is analyzed and numerical results are included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A general three‐dimensional concurrent multiscale modeling approach is developed for amorphous materials. The material is first constructed as a tessellation of hexahedral amorphous cells. For regions of linear deformation, the number of degrees of freedom is reduced by computing the displacements of the vertices of the amorphous cells only instead of the atoms within. This is achieved by determining, a priori, the atom displacements within such pseudoamorphous cells associated with orthogonal deformation modes of the cell. Actual atom displacements are calculated using traditional molecular mechanics for regions of nonlinear deformation. Computational implementation of the coupling between pseudoamorphous cells and molecular mechanics regions and stiffness matrix formulation are elucidated. Multiscale simulations of nanoindentation on polymer and crystalline substrates show good agreement with pure molecular mechanics simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, we choose the points and weights of the Gauss–Jacobi, Gauss–Radau–Jacobi and Gauss–Lobatto–Jacobi quadrature rules that optimize the number of operations for the mass and stiffness matrices of the high‐order finite element method. The procedure is particularly applied to the mass and stiffness matrices using the tensor‐based nodal and modal shape functions given in (Int. J. Numer. Meth. Engng 2007; 71 (5):529–563). For square and hexahedron elements, we show that it is possible to use tensor product of the 1D mass and stiffness matrices for the Poisson and elasticity problem. For the triangular and tetrahedron elements, an analogous analysis given in (Int. J. Numer. Meth. Engng 2005; 63 (2):1530–1558) was considered for the selection of the optimal points and weights for the stiffness matrix coefficients for triangles and mass and stiffness matrices for tetrahedra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the one‐dimensional differential matrix derived from the Lagrange series interpolation, the finite block method is proposed first time to solve both stationary and transient heat conduction problems of anisotropic and functionally graded materials. The main idea is to establish the first order one‐dimensional differential matrix constructed by using Lagrange series with uniformly distributed nodes. Then the higher order of derivative matrix for one‐dimensional problem is obtained. By introducing the mapping technique, a block of quadratic type is transformed from Cartesian coordinate (xyz) to normalised coordinate (ξη?) with 8 seeds or 20 seeds for two or three dimensions. Then the differential matrices in physical domain are determined from that in normalised transformed coordinate system. In addition, the time dependent partial differential equations are analysed in the Laplace transformed domain, and the Durbin inversion method is used to determine the values in time domain. Illustrative two‐dimensional and three‐dimensional numerical examples are given, and comparisons have been made with analytical solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
An element‐wise locally conservative Galerkin (LCG) method is employed to solve the conservation equations of diffusion and convection–diffusion. This approach allows the system of simultaneous equations to be solved over each element. Thus, the traditional assembly of elemental contributions into a global matrix system is avoided. This simplifies the calculation procedure over the standard global (continuous) Galerkin method, in addition to explicitly establishing element‐wise flux conservation. In the LCG method, elements are treated as sub‐domains with weakly imposed Neumann boundary conditions. The LCG method obtains a continuous and unique nodal solution from the surrounding element contributions via averaging. It is also shown in this paper that the proposed LCG method is identical to the standard global Galerkin (GG) method, at both steady and unsteady states, for an inside node. Thus, the method, has all the advantages of the standard GG method while explicitly conserving fluxes over each element. Several problems of diffusion and convection–diffusion are solved on both structured and unstructured grids to demonstrate the accuracy and robustness of the LCG method. Both linear and quadratic elements are used in the calculations. For convection‐dominated problems, Petrov–Galerkin weighting and high‐order characteristic‐based temporal schemes have been implemented into the LCG formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper introduces an efficient method for surface reconstruction from sectional contours. The surface between neighbouring sections is reconstructed based on the consistent utilization of the two‐dimensional constrained Delaunay triangulation. The triangulation is used to extract the parametric domain and to solve the problems associated with correspondence, tiling and branching in a general framework. Natural distance interpolations are performed in order to complete the mapping of the added intermediate points. Surface smoothing and remeshing are conducted to optimize the initial surface triangulations. Several examples are presented to demonstrate the effectiveness and efficiency of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号