首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogels based on N‐acryloyl‐N′‐methylpiperazine (AcrNMP) swelled extensively in solutions of low pH due to the protonation of the tertiary amine. The water transport in the gels under an acidic condition was non‐Fickian and nearly Fickian in neutral pH with the collective diffusion coefficients determined as 2.08 × 10−7 and 5.00 × 10−7 cm−2 s−1, respectively. These gels demonstrated good metal‐uptake behavior with various divalent metal ions, in particular, copper and nickel, with the uptake capacity increased with increasing pH. The swelling ratio of the gel in the presence of metal ions decreased with increasing metal ion uptake. The results suggest that high metal ion uptake can lead to physical crosslinking arising from the interchain metal complex formation. The metal‐loaded gels could be stripped easily with 1M H2SO4 without any loss in their uptake capacity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 268–273, 2001  相似文献   

2.
Radical copolymerizations of 1‐vinyl‐2‐pyrrolidone with acrylamide and N,N′‐dimethylacrylamide at different feed ratios were investigated. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The copolymer composition was determined from the 1H NMR spectra and found to be statistical. The metal complexation of poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone) and poly(N,N′‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) for the metal ions Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Fe(III), and Cr(III) were investigated in an aqueous phase. The liquid‐phase polymer‐based retention method is based on the retention of inorganic ions by soluble polymers in a membrane filtration cell and subsequent separation of low‐molecular compounds from the polymer complex formed. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. Poly(N,N‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) showed a higher affinity for the metal ions than poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone). According to the interaction pattern obtained, Cr(III) and Cu(II) formed the most stable complexes at pH 7. Pb(II) and Zn(II) were not retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 741–750, 1999  相似文献   

3.
We carried out the free‐radical copolymerization of N‐phenylmaleimide with acrylic acid and acrylamide with an equimolar feed monomer ratio. We carried out the synthesis of the copolymers in dioxane at 70°C with benzoyl peroxide as the initiator and a total monomer concentration of 2.5M. The copolymer compositions were obtained by elemental analysis and 1H‐NMR spectroscopy. The hydrophilic polymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymers were performed. Hydrophilic poly(N‐phenylmaleimide‐co‐acrylic acid) and poly(N‐phenylmaleimide‐co‐acrylamide) were used for the separation of a series of metal ions in the aqueous phase with the liquid‐phase polymer‐based retention method in the heterogeneous phase. The method is based on the retention of inorganic ions by the polymer in conjunction with membrane filtration and subsequent separation of low‐molecular‐mass species from the formed polymer/metal‐ion complex. The polymer could bind several metal ions, such as Cr(III), Co (II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) inorganic ions, in aqueous solution at pH values of 3, 5, and 7. The interaction of the inorganic ions with the hydrophilic polymer was determined as a function of pH and a filtration factor. Hydrophilic polymeric reagents with strong metal‐complexing properties were synthesized and used to separate those complexed from noncomplexed ions in the heterogeneous phase. The polymers exhibited a high retention capability at pH values of 5 and 7. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

4.
Metal ion desorbed crosslinked N,N‐bis(2‐aminoethyl)polyacrylamides showed enhanced specificity for the desorbed metal ion, and these polymers selectively rebind the desorbed metal ion from a mixture of metal ions. For this, polyacrylamide with 8 mol % divinylbenzene (DVB) and N,N′‐methylene‐bisacrylamide (NNMBA) crosslinking were prepared by solution polymerization. Diethylenetriamino functions were incorporated into the polymers by polymer analogous reactions. The complexing ability of the amino polymers were investigated toward various transition metal ions like Co(II), Ni(II), Cu(II), and Zn(II). Polymeric ligand and metal complexes were characterized by various spectral methods. The removal of the metal ion from the polymer matrix resulted in a memory for the desorbed metal ion. On rebinding, these polymers specifically rebind the desorbed metal ion and from a mixture of metal ions, it showed selectivity to the desorbed metal ion. Thus, the Cu(II) desorbed polymer specifically and selectively rebind Cu(II) ion from a mixture of Cu(II) and other metal ion. This selectivity is higher in the rigid DVB‐crosslinked system, resulting from the high rigidity of the crosslinked matrix compared to the semirigid NNMBA‐crosslinked system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
ET‐g‐PAAc membranes were obtained by radiation grafting of acrylic acid onto poly(tetrafluoroethylene–ethylene) copolymer films using a mutual technique. The ion selectivity of the grafted membranes was determined toward K+, Ag+, Hg2+, Co2+, and Cu2+ in a mixed aqueous solution. The ion‐exchange capacity of the grafted membranes was measured by back titration and atomic absorption spectroscopy. The Hg2+ ion content of the membrane was more than that of either the K+ or Ag+ ions. The presence of metal ions in the membranes was studied by infrared and energy‐dispersive spectroscopy measurements. Scanning electron microscopy of the grafted and metal‐treated grafted membranes showed modification of the morphology of the surface due to the adsorption of K+ and Ag+ ions. No change was observed for the surface of the membrane that was treated with Hg2+ ions. The thermal stability of different membranes was improved more with Ag+ and Hg2+ ions than with K+ ions. It was found that the modified grafted membranes possessed good hydrophilicity, which may make them promising candidates for practical applications, such as for cation‐exchange membranes in the recovery of metals from an aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2692–2698, 2002  相似文献   

6.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

7.
Water‐soluble polymers have attracted much interest due to their potential applications in environmental protection engineering to remove harmful pollutants and in biomedicine in the areas of tissue engineering, within‐body implants or other medical devices, artificial organ prostheses, ophthalmology, dentistry, bone repair, and so on. In this review, particular emphasis is given to the ability of water‐soluble polymers with amine, amide, carboxylic acid, hydroxyl and sulfonic acid functional groups to remove metal ions by means of the liquid‐phase polymer‐based retention (LPR) technique that combines the use of water‐soluble polymers and ultrafiltration membranes. The second part is dedicated to showing the potential application of functional water‐soluble polymers and their polymer–metal complexes as biocides for various bacteria. These polymers and polymer–metal complexes show an efficient bactericide activity, especially to Gram‐negative bacteria, Staphylococcus aureus reaching concentrations lower than 4 µg mL?1. This activity depends on polymer size, type of metal ion, contact time and concentration of polymer and metal ion. The discussion reveals that in the case of the LPR process the efficiency of metal ion removal depends strongly on the type of polymer functional group and the feed pH value. In general, two mechanisms of ion entrapment are suggested: complex formation and electrostatic interaction. In the case of the medical use of water‐soluble polymers and their complexes with metal ions, the review documents the unique bactericide properties of the investigated species. The polymer‐metal ion complexes show a reduced genotoxic activity compared with free metal ions. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Chlorosulfonated polyethylene membranes and hollow fibers were reacted with allylic amino jojoba to bind the wax chemically to the polymer. The modified membranes and hollow fibers were then tested in the ion‐exchange and pervaporation processes, respectively. The jojoba‐bound polyethylene membranes were selective in preventing transfer of divalent ions such as Ca2+ and Mg2+, while monovalent ion such as K+ and Na+ could penetrate the membranes. The flux of the monovalent ions depended on the amount of jojoba bound to the polymer, which acted as a barrier to the ions (the monovalent ions could be eluted by acid washing). The concentration of ions (in the range of 0.05–1.0 N) in the feed solution had little effect on the flux. Preliminary results of pervaporation of a dioxane/water mixture through hollow fibers made of jojoba‐bound chlorosulfonated polyethylene show separation of the dioxane from the water with a separation factor of 6. This technique can be applied to remove residual organic solvents in the purification of industrial waste water. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 763–768, 2001  相似文献   

9.
p‐Chlorophenylmaleimide and p‐hydroxyphenylmaleimide with 2‐hydroxypropyl methacrylate were synthesized by radical polymerization, and the metal ion retention capacity and thermal behavior of the copolymers were evaluated. The copolymers were obtained by solution radical polymerization with a 0.50 : 0.50 feed monomer ratio. The maximum retention capacity (MRC) for the removal of two metal ions, Co(II) and Ni(II) in aqueous phase were determined using the liquid‐phase polymer based retention technique. Inorganic ion interactions with the hydrophilic polymer were determined as a function of pH. The metal ion retention capacity does not depend strongly on the pH. Metal ion retention increased with an increase of pH for a copolymer composition 0.50 : 0.50. At different pH, the MRC of the poly(p‐chlorophenylmaleimide‐co‐2‐hydroxypropylmethacrylate) for Co(II) and Ni(II) ions varied from 44.1 to 48.6 mg/g and from 41.5 mg/g to 46.0 mg/g, respectively; while the MRC of poly(p‐hydroxyphenylmaleimide‐co‐2‐hydroxypropyl methacrylate) for Co(II) and Ni(II) ions varied from 28.4 to 35.6 mg/g and from 27.2 to 30.8 mg/g, respectively. The copolymers and copolymer–metal complexes were characterized by elemental analysis, FT‐IR, 1H NMR spectroscopy, and thermal behavior. The thermal behavior of the copolymer and polymer–metal complexes were studied using differential scanning calorimetry and thermogravimetry techniques under nitrogen atmosphere. The thermal decomposition temperature and Tg were influenced by the binding‐metal ion on the copolymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
The present work concerns a development of new membranes for performing ions separation. These membranes were prepared by solution casting followed by solvent evaporation, using a commercial cellulose triacetate (CTA), synthesized poly (N,N‐dimethylaminoethyl methacrylate), macrocylic polyethers (15‐crown‐5 and Dibenzo‐24‐crown‐8) as carrier and dioctylphtalate as plasticizer. Different Polymer Inclusion Membranes were characterized using physical and chemical techniques as well as Fourier transform infrared, thermogravimetric analysis, and scanning electron microscopy. Transport of lead and cadmium in aqueous solution has been studied using these systems. The selective separation of these membranes is accomplished by the presence of specific compounds, called carriers, in the membrane phase. The carriers are responsible to facilitate the transport of the target component across selective membranes. The influence of the membrane nature has been studied using some supports of different physical characteristics. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46592.  相似文献   

11.
The retention of various metal ions by water‐soluble poly(4‐vinylpyridine) methyl iodide in conjunction with ultrafiltration membrane was investigated. The method is based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molecular weight species from the polymer metal ion complex formed. It is shown that the polychelatogen can bind silver(I) and mercury(II) ions in aqueous solution at pH 1. At higher pH, the water‐soluble polymer can be applied to the separation and preconcentration of silver metal ions. Therefore, this polychelatogen is highly selective to Hg(II) at pH 1 with respect to metal ions such as Cd(II) and Zn(II). © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2578–2582, 2001  相似文献   

12.
Asymmetric ultrafiltration (UF) membranes were prepared by the blending of poly(ether sulfone) (PES) and sulfonated poly(ether ether ketone) (SPEEK) polymers with N,N′‐dimethylformamide solvent by the phase‐inversion method. SPEEK was selected as the hydrophilic polymer in a blend with different composition of PES and SPEEK. The solution‐cast PES/SPEEK blend membranes were homogeneous for all of the studied compositions from 100/0 to 60/40 wt % in a total of 17.5 wt % polymer and 82.5 wt % solvent. The presence of SPEEK beyond 40 wt % in the casting solution did not form membranes. The prepared membranes were characterized for their UF performances, such as pure water flux, water content, porosity, and membrane hydraulic resistance, and morphology and melting temperature. We estimated that the pure water flux of the PES/SPEEK blend membranes increased from 17.3 to 85.6 L m?2 h?1 when the concentration of SPEEK increased from 0 to 40 wt % in the casting solution. The membranes were also characterized their separation performance with proteins and metal‐ion solutions. The results indicate significant improvement in the performance characteristics of the blend membranes with the addition of SPEEK. In particular, the rejection of proteins and metal ions was marginally decreased, whereas the permeate flux was radically improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
In this research, heterogeneous cation exchange membranes were prepared by the casting‐solution technique using polycarbonate (PC) and S‐polyvinylchloride (S‐PVC) as binders along with cation exchange resin as functional group agent. The effect of blend ratio (PC to S‐PVC) of polymer binder on structure and electrochemical properties of the prepared membranes were elucidated. The morphology of the prepared membranes was investigated by scanning electron microscopy (SEM) and scanning optical microscopy (SOM). The images show that the addition of PC ratio in the casting solution results in formation of a membrane with more inner cavities and micro voids. The electrochemical properties and mechanical strength tests were conducted. Water content, ion exchange capacity, ion permeability, flux, current efficiency, and oxidative stability of the prepared membranes initially were decreased by increasing the PC ratio in the casting solution and then it began to increase. The blending of S‐PVC and PC polymers results in membranes with lower mechanical strength. Membrane potential, surface charge density, perm‐selectivity, cationic transport number, electrical resistance, and energy consumption were initially improved by the increment of PC ratio in the casting solution and then it decreased. The membrane with 70% PC exhibited the highest flux, maximum current efficiency, and minimum energy consumption. However, the selectivity of this membrane was low compared with the other prepared membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The pervaporation of aqueous butanol solutions was investigated using thin‐film composite membranes composed of a poly(vinylidene fluoride) substrate coated with a sulfonated poly(2,6‐dimethyl‐1,4‐phenelene oxide) polymer. The polymer was ion‐exchanged with quaternary ammonium cations having aliphatic substituents of various chain lengths. The pervaporation of aqueous n‐butanol solutions using these membranes gave a permeate more concentrated in n‐butanol; therefore, they were alcohol‐selective. The separation factor increased and the permeate flux decreased as the chain lengths of the aliphatic substituents were increased. Hence, the mass‐transport properties of such membranes can be controlled or altered to yield some desired permselectivity by the introduction of a proper counterion. It was observed that the n‐butanol flux was small relative to the total flux and, therefore, the water flux dominated the total permeate flux. The degree of swelling of the membranes and its effect on membrane performance was investigated as well. As the n‐butanol content was increased, the swelling of the membranes increased greatly. High membrane swelling caused a reduction in the separation factor. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 47–58, 1999  相似文献   

16.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Cellulose acetate (CA) is well known glassy polymer used in the fabrication of gas‐separation membranes. In this study, 5,11,17,23‐tetrakis(N‐morpholinomethyl)‐25,26,27,28‐tetrahydroxycalix[4]arene (CL) was blended with CA to study the gas‐permeation behavior for CO2, N2, and CH4 gases. We prepared the pure CA and CA/CL blended membranes by following a diffusion‐induced phase‐separation method. Three different concentrations of CL (3, 10, and 30 wt %) were selected for membrane preparation. The CA/CL blended membranes were then characterized via Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray diffraction analysis. The homogeneous blending of CL and CA was confirmed in the CA/CL blended membranes by both SEM and AFM analysis. In addition to this, the surface roughness of the CA/CL blended membranes also increased with increasing CL concentration. FTIR analysis described the structural modification in the CA polymer after it was blended with CL too. Furthermore, CL improved the tensile strength of the CA membrane appreciably from 0.160 to 1.28 MPa, but this trend was not linear with the increase in the CL concentration. CO2, CH4, and N2 gases were used for gas‐permeation experiments at 4 bars. With the permeation experiments, we concluded that permeability of N2 was higher in comparison to those of CO2 and CH4 through the CA/CL blended membranes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39985.  相似文献   

18.
《分离科学与技术》2012,47(17):2749-2764
Abstract

A novel polymer material composed of cellulose triacetate as support, o-ni-trophenyl octyl ether as plasticizer (solvent), and dicyclohexano-18-crown-6 as carrier was investigated as a solid extractant for metal ion sorption and as a membrane material for ion transport. Selective extraction and transport of Pb(II), Ga(III), and Fe(III) were observed. The influence of the source solution counterion on sorption and transport processes was investigated. The transport mechanism is discussed in terms of diffusion coefficients (D) and extraction constants (K 1). A diffusion-limited transport model has been found to accurately describe metal ion transport by dicyclohexano-18-crown-6 in these systems. The membranes are easy to prepare in the laboratory, and they may be useful in separation and concentration procedures.  相似文献   

19.
Poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) membranes in the hydrogen form were converted to monovalent metal ion forms Li+, Na+, and K+. The effect of exchange with metal ions was investigated by measuring the swelling of water–ethanol (10/90) mixtures at 30 °C and by the pervaporative dehydration performance test for aqueous ethanol solutions with various ethanol concentrations at 30, 40, and 50 °C. In addition, electron spectroscopy for chemical analysis (ESCA) analysis was carried out to study the quantity of metal ions in membranes. From the ESCA analysis, the lithium ion quantity in the resulting membranes is greater than that of any other metal ions in question because of the easy diffusion of a smaller metal ion into the membrane matrix. The swelling ratio was in the following order: PVA/SSA‐Li+ > PVA/SSA‐Na+ > PVA/SSA‐K+ membranes. For pervaporation, the PVA/SSA‐Na+ membrane showed the lowest flux and highest separation factor for all aqueous ethanol solutions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1867–1873, 2002  相似文献   

20.
Chloromethylated polystyrene was chemically modified through alkylation of pyridylazo‐β‐naphthol (PAN) in the presence of a phase‐transfer catalyst. The chemical modification was achieved through O‐alkylation as well as N‐alkylation of PAN, leading to formation of polymer‐supported quaternary ammonium salt in the latter case. Both types of a polymer‐supported PAN moiety were detected by FTIR spectroscopic analysis. The complexation behavior of the polymer‐supported PAN as an ion‐exchanger toward some metal ions was studied. Thermogravimetric and differential thermogravimetric analyses data were used to study the kinetics of the thermal decomposition process of the ion‐exchanger. Some thermodynamic parameters for the ion‐exchanger were calculated by applying the rate theory of the first‐order reaction. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3044–3048, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号