首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hybrid numerical scheme based on finite element and finite volume methods is developed to solve shallow water equations. In the recent past, we introduced a series of hybrid methods to solve incompressible low and high Reynolds number flows for single and two‐fluid flow problems. The present work extends the application of hybrid method to shallow water equations. In our hybrid shallow water flow solver, we write the governing equations in non‐conservation form and solve the non‐linear wave equation using finite element method with linear interpolation functions in space. On the other hand, the momentum equation is solved with highly accurate cell‐center finite volume method. Our hybrid numerical scheme is truly a segregated method with primitive variables stored and solved at both node and element centers. To enhance the stability of the hybrid method around discontinuities, we introduce a new shock capturing which will act only around sharp interfaces without sacrificing the accuracy elsewhere. Matrix‐free GMRES iterative solvers are used to solve both the wave and momentum equations in finite element and finite volume schemes. Several test problems are presented to demonstrate the robustness and applicability of the numerical method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
组合杂交元方法是一种求解弹性力学问题的稳定化有限元方法.为了快速求解组合杂交元离散得到的大型、稀疏、对称正定系统,本文研究了多重网格预处理共轭梯度方法.首先,通过选用合适的网格转移算子和光滑策略,得到了有效的多重网格预处理器.其次,通过分析数值试验结果证明所得到的多重网格预处理共轭梯度方法是有效可行的,利用该预处理方法大大降低了系数矩阵的条件数,提高了计算效率.此外,对于一类高性能的组合杂交元,多重网格预处理共轭梯度方法在网格畸变时依然收敛.  相似文献   

3.
In this paper, we propose a novel unfitted finite element method for the simulation of multiple body contact. The computational mesh is generated independently of the geometry of the interacting solids, which can be arbitrarily complex. The key novelty of the approach is the combination of elements of the CutFEM technology, namely, the enrichment of the solution field via the definition of overlapping fictitious domains with a dedicated penalty‐type regularisation of discrete operators and the LaTIn hybrid‐mixed formulation of complex interface conditions. Furthermore, the novel P1‐P1 discretisation scheme that we propose for the unfitted LaTIn solver is shown to be stable, robust, and optimally convergent with mesh refinement. Finally, the paper introduces a high‐performance 3D level set/CutFEM framework for the versatile and robust solution of contact problems involving multiple bodies of complex geometries, with more than 2 bodies interacting at a single point.  相似文献   

4.
Quadrilateral and triangular elements with curved edges are developed in the framework of spectral, discontinuous, hybrid control‐volume/finite‐element method for elliptic problems. In order to accommodate hybrid meshes, encompassing both triangular and quadrilateral elements, one single mapping is used. The scheme is applied to two‐dimensional problems with discontinuous, anisotropic diffusion coefficients, and the exponential convergence of the method is verified in the presence of curved geometries. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
6.
In this paper, a novel characteristic–based penalty (CBP) scheme for the finite‐element method (FEM) is proposed to solve 2‐dimensional incompressible laminar flow. This new CBP scheme employs the characteristic‐Galerkin method to stabilize the convective oscillation. To mitigate the incompressible constraint, the selective reduced integration (SRI) and the recently proposed selective node–based smoothed FEM (SNS‐FEM) are used for the 4‐node quadrilateral element (CBP‐Q4SRI) and the 3‐node triangular element (CBP‐T3SNS), respectively. Meanwhile, the reduced integration (RI) for Q4 element (CBP‐Q4RI) and NS‐FEM for T3 element (CBP‐T3NS) with CBP scheme are also investigated. The quasi‐implicit CBP scheme is applied to allow a large time step for sufficient large penalty parameters. Due to the absences of pressure degree of freedoms, the quasi‐implicit CBP‐FEM has higher efficiency than quasi‐implicit CBS‐FEM. In this paper, the CBP‐Q4SRI has been verified and validated with high accuracy, stability, and fast convergence. Unexpectedly, CBP‐Q4RI is of no instability, high accuracy, and even slightly faster convergence than CBP‐Q4SRI. For unstructured T3 elements, CBP‐T3SNS also shows high accuracy and good convergence but with pressure oscillation using a large penalty parameter; CBP‐T3NS produces oscillated wrong velocity and pressure results. In addition, the applicable ranges of penalty parameter for different proposed methods have been investigated.  相似文献   

7.
Fluid–structure coupled problems are investigated to predict the vibro‐acoustic behavior of submerged bodies. The finite element method is applied for the structural part, whereas the boundary element method is used for the fluid domain. The focus of this paper is on partly immersed bodies. The fluid problem is favorably modeled by a half‐space formulation. This way, the Dirichlet boundary condition on the free fluid surface is incorporated by a half‐space fundamental solution. A fast multipole implementation is presented for the half‐space problem. In case of a high density of the fluid, the forces due to the acoustic pressure, which act on the structure, cannot be neglected. Thus, a strong coupling scheme is applied. An iterative solver is used to handle the coupled system. The efficiency of the proposed approach is discussed using a realistic model problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a coupling technique is developed for the combination of the wavelet‐Galerkin method (WGM) with the finite element method (FEM). In this coupled method, the WGM and FEM are respectively used in different sub‐domains. The WGM sub‐domain and the FEM sub‐domain are connected by a transition region that is described by B‐spline basis functions. The basis functions of WGM and FEM are modified in the transition region to ensure the basic polynomial reconstruction condition and the compatibility of displacements and their gradients. In addition, the elements of FEM and WGM are not necessary to conform to the transition region. This newly developed coupled method is applied to the stress analysis of 2D and 3D elasticity problems in order to investigate its performance and study parameters. Numerical results show that the present coupled method is accurate and stable. The new method has a promising potential for practical applications and can be easily extended for coupling of other numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a new 4‐node hybrid stress element is proposed using a node‐based smoothing technique of tetrahedral mesh. The conditions for hybrid stress field required are summarized, and the field should be continuous for better performance of a constant‐strain tetrahedral element. Nodal stress is approximated by the node‐based smoothing technique, and the stress field is interpolated with standard shape functions. This stress field is linear within each element and continuous across elements. The stress field is expressed by nodal displacements and no additional variables. The element stiffness matrix is calculated using the Hellinger‐Reissner functional, which guarantees the strain field from displacement field to be equal to that from the stress field in a weak sense. The performance of the proposed element is verified by through several numerical examples.  相似文献   

10.
Recently developed non‐reflecting boundary conditions are applied for exterior time‐dependent wave problems in unbounded domains. The linear time‐dependent wave equation, with or without a dispersive term, is considered in an infinite domain. The infinite domain is truncated via an artificial boundary ??, and a high‐order non‐reflecting boundary condition (NRBC) is imposed on ??. Then the problem is solved numerically in the finite domain bounded by ??. The new boundary scheme is based on a reformulation of the sequence of NRBCs proposed by Higdon. We consider here two reformulations: one that involves high‐order derivatives with a special discretization scheme, and another that does not involve any high derivatives beyond second order. The latter formulation is made possible by introducing special auxiliary variables on ??. In both formulations the new NRBCs can easily be used up to any desired order. They can be incorporated in a finite element or a finite difference scheme; in the present paper the latter is used. In contrast to previous papers using similar formulations, here the method is applied to a fully exterior two‐dimensional problem, with a rectangular boundary. Numerical examples in infinite domains are used to demonstrate the performance and advantages of the new method. In the auxiliary‐variable formulation long‐time corner instability is observed, that requires special treatment of the corners (not addressed in this paper). No such difficulties arise in the high‐derivative formulation. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

11.
To simulate the transient scalar wave propagation in a two‐dimensional unbounded waveguide, an explicit finite element artificial boundary scheme is proposed, which couples the standard dynamic finite element method for complex near field and a high‐order accurate artificial boundary condition (ABC) for simple far field. An exact dynamic‐stiffness ABC that is global in space and time is constructed. A temporal localization method is developed, which consists of the rational function approximation in the frequency domain and the auxiliary variable realization into time domain. This method is applied to the dynamic‐stiffness ABC to result in a high‐order accurate ABC that is local in time but global in space. By discretizing the high‐order accurate ABC along artificial boundary and coupling the result with the standard lumped‐mass finite element equation of near field, a coupled dynamic equation is obtained, which is a symmetric system of purely second‐order ordinary differential equations in time with the diagonal mass and non‐diagonal damping matrices. A new explicit time integration algorithm in structural dynamics is used to solve this equation. Numerical examples are given to demonstrate the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A generalized scheme for the fabrication of high performance photodetectors consisting of a p‐type channel material and n‐type nanoparticles is proposed. The high performance of the proposed hybrid photodetector is achieved through enhanced photoabsorption and the photocurrent gain arising from its effective charge transfer mechanism. In this paper, the realization of this design is presented in a hybrid photodetector consisting of 2D p‐type black phosphorus (BP) and n‐type molybdenum disulfide nanoparticles (MoS2 NPs), and it is demonstrated that it exhibits enhanced photoresponsivity and detectivity compared to pristine BP photodetectors. It is found that the performance of hybrid photodetector depends on the density of NPs on BP layer and that the response time can be reduced with increasing density of MoS2 NPs. The rising and falling times of this photodetector are smaller than those of BP photodetectors without NPs. This proposed scheme is expected to work equally well for a photodetector with an n‐type channel material and p‐type nanoparticles.  相似文献   

13.
This paper presents a computational method for converting a tetrahedral mesh to a prism–tetrahedral hybrid mesh for improved solution accuracy and computational efficiency of finite element analysis. The proposed method performs this conversion by inserting layers of prism elements and deleting tetrahedral elements in sweepable sub‐domains, in which cross‐sections remain topologically identical and geometrically similar along a certain sweeping path. The total number of finite elements is reduced because roughly three tetrahedral elements are converted to one prism element. The solution accuracy of the finite element analysis improves since a prism element yields a more accurate solution than a tetrahedral element due to the presence of higher‐order terms in the shape function. Only previously known method for creating such a prism–tetrahedral hybrid mesh was to manually decompose a target volume into sweepable and non‐sweepable sub‐volumes and mesh each of the sub‐volumes separately. Unlike the previous method, the proposed method starts from a cross‐section of a tetrahedral mesh and replaces the tetrahedral elements with layers of prism elements until prescribed quality criteria can no longer be satisfied. A series of computational fluid dynamics simulations and structural analyses have been conducted, and the results verified a better performance of prism–tetrahedral hybrid mesh. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The goal of our paper is to demonstrate the cost‐effective use of the Lanczos method for estimating the critical time step in an explicit, transient dynamics code. The Lanczos method can provide a significantly larger estimate for the critical time‐step than an element‐based method (the typical scheme). However, the Lanczos method represents a more expensive method for calculating a critical time‐step than element‐based methods. Our paper shows how the additional cost of the Lanczos method can be amortized over a number of time steps and lead to an overall decrease in run‐time for an explicit, transient dynamics code. We present an adaptive hybrid scheme that synthesizes the Lanczos‐based and element‐based estimates and allows us to run near the critical time‐step estimate provided by the Lanczos method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Effective simulation of the solid‐liquid‐gas coupling effect in unsaturated porous media is of great significance in many diverse areas. Because of the strongly nonlinear characteristics of the fully coupled formulations for the three‐phase porous media, an effective numerical solution scheme, such as the finite element method with an efficient iterative algorithm, has to be employed. In this paper, an efficient finite element procedure based on the adaptive relaxed Picard method is developed for analyzing the coupled solid‐liquid‐gas interactions in porous media. The coupled model and the finite element analysis procedure are implemented into a computer code PorousH2M, and the proposed procedure is validated through comparing the numerical simulations with the experimental benchmarks. It is shown that the adaptive relaxed Picard method has salient advantage over the traditional one with respect to both the efficiency and the robustness, especially for the case of relatively large time step sizes. Compared with the Newton‐Raphson scheme, the Picard method successfully avoids the unphysical ‘spurious unloading’ phenomenon under the plastic deformation condition, although the latter shows a better convergence rate. The proposed procedure provides an important reference for analyzing the fully coupled problems related to the multi‐phase, multi‐field coupling in porous media. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents high‐order implementations of a generalized finite element method for through‐the‐thickness three‐dimensional branched cracks. This approach can accurately represent discontinuities such as triple joints in polycrystalline materials and branched cracks, independently of the background finite element mesh. Representative problems are investigated to illustrate the accuracy of the method in combination with various discretizations and refinement strategies. The combination of local refinement at crack fronts and high‐order continuous and discontinuous enrichments proves to be an excellent combination which can deliver convergence rates close to that of problems with smooth solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A wavelet‐based, high‐order time integration method is applied to replace the parabolic problem governing the response of incompressible biphasic media by a set of uncoupled Helmholtz problems. Their formal solutions are used to formulate the stress model of the hybrid‐Trefftz finite element formulation. The stress, pressure and displacement fields are directly approximated and designed to satisfy locally the equilibrium condition in each phase of the mixture. This basis is used to enforce on average the compatibility conditions and the constitutive relations of the mixture. The displacements in the solid and the normal displacement in the fluid are approximated independently on the boundary of the element and the basis is used to enforce in weak form the boundary equilibrium conditions. The resulting solving system is sparse, well suited to adaptive refinement and parallel processing. The energy statements associated with the formulation are recovered and sufficient conditions for the uniqueness of the finite element solutions are stated. Testing problems reported in the literature are used to illustrate the quality of the pressure, stress, displacement and velocity estimates obtained with the hybrid‐Trefftz stress element. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A new finite element scheme is proposed for the numerical solution of time‐harmonic wave scattering problems in unbounded domains. The infinite domain in truncated via an artificial boundary ?? which encloses a finite computational domain Ω. On ?? a local high‐order non‐reflecting boundary condition (NRBC) is applied which is constructed to be optimal in a certain sense. This NRBC is implemented in a special way, by using auxiliary variables along the boundary ??, so that it involves no high‐order derivatives regardless of its order. The order of the scheme is simply an input parameter, and it may be arbitrarily high. This leads to a symmetric finite element formulation where standard C0 finite elements are used in Ω. The performance of the method is demonstrated via numerical examples, and it is compared to other NRBC‐based schemes. The method is shown to be highly accurate and stable, and to lead to a well‐conditioned matrix problem. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This paper employs a novel numerical technique, designated as the hybrid moisture element method (HMEM), to model and analyze moisture diffusion in a heterogeneous epoxy resin containing multiple randomly distributed particles. The HMEM scheme is based on a hybrid moisture element (HME), whose properties are determined by equivalent moisture capacitance and conductance matrixes calculated using the conventional finite element formulation. A coupled HME-FE scheme is developed and implemented using the commercial FEM software ABAQUS. The HME-FE scheme is then employed to analyze the moisture diffusion characteristics of a heterogeneous epoxy resin layer containing particle inclusions. The analysis commences by comparing the performance of the proposed scheme with that of the conventional FEM in modeling the moisture diffusion process. Having validated its performance, the scheme is then employed to investigate the relationship between the volume fraction of the particles in the resin composite and the rate of moisture diffusion. It is found that moisture diffusion is retarded significantly as the volume fraction of particles increases.
The HMEM approach proposed in this study provides a straightforward and efficient means of modeling moisture diffusion in a heterogeneous epoxy resin containing multiple randomly distributed particles since only one HME moisture characteristic matrixes needs to be calculated for all HMEs sharing the same characteristics. Furthermore, different volume fractions can be modeled without modifying the original model simply by controlling the size of the inter-phase region within the HME domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号