首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modelling technique is proposed for direct use of the discrete complex image method (DCIM) to derive closed-form expressions for electric field components encountered in the electric field integral equation (EFIE) representing a lossy half space problem. The technique circumvents time consuming numerical computation of Sommerfeld integrals by approximating the kernel of the integrals with appropriate mathematical functions. This is done by appropriate use of either the least-square Prony (LS-Prony) method or the matrix pencil method (MPM) to represent electric field expressions in terms of spherical waves and their derivatives. A comparison is made between the two methods based on the computation time and accuracy and it is shown that the LS-Prony method performs two?three times faster than the MPM in approximating the integral kernels depending on the platform. The main feature of the proposed technique is its ability for direct inclusion in the kernel of computational tools based on the method of moments solution of the EFIE. This can be viewed as an advantage over the conventional DCIM approximation of spatial Green's functions for mixed potential integral equation for cases where the problem in hand can be more efficiently represented by the EFIE (e.g. the thin-wire EFIE). The accuracy of the proposed technique is validated against numerical integration of Sommerfeld integrals for an arbitrary electric dipole inside a lossy half space.  相似文献   

2.
Time-domain finite methods are considered by many as good candidates for the powerful, versatile, and accurate numerical simulation of complex electromagnetic phenomena. However, some concerns still remain about the accuracy of these methods, and questions keep being raised about their modeling versatility. By reviewing the key characteristics of several of these finite methods, and considering the various sources of the associated discretization and numerical error, it is argued that their proper use permits the accurate modeling of electromagnetic scattering and propagation phenomena associated with structures of electrical size and complexity beyond the capabilities of present frequency-domain finite and integral equation methods.<>  相似文献   

3.
A numerical study on the dynamic behaviour of a charged and conducting drop, with net electrical charge , is presented here, that is valid for arbitrary initial disturbances. It employs the integral form of Laplace's equation for the calculation of the velocity and electrostatic potentials, which only requires discretization and solution on the surface of the drop. Thus a hybrid method results with the integral equations solved via the boundary element technique, while the Galerkin finite element formulation is used for the kinematic and dynamic condition at the interface as well as for the net charge conservation equation. Recently, the authors followed this approach in their study on the free nonlinear oscillations of inviscid drops, and they were able to optimize time and space discretization as well as the treatment of the integral equation with excellent results.  相似文献   

4.
This paper contains guidelines for numerical solution of the EFIE meshfree. Degrees of freedom including mathematical statement, the meshfree method, shape functions and their parameters are considered and proper choices are selected by logical deduction, experience or previous reports. The method is based on decomposing the differential and integral parts of the EFIE, which is an integro-differential equation. These two independent parts could be processed in parallel. The differential and the integral parts are expanded over interpolants and approximant meshless shape functions, respectively. The final arrangement is applied to various scattering problems. Even though we applied the method mostly to linear and rectangular structures, the approach is applicable to all Electromagnetic integral equations of arbitrary geometries. For simple geometries with equidistance node arrangements and considering only the central node for support of the approximants, suggestions are made for bypassing numerical integration. In this case, although the differential part is still meshless, the integral part cannot be regarded as a meshless method in a strict sense and it may be considered a high-order collocation method. The results are compared with the low-order method of moments, previous reports and the FEKO software.  相似文献   

5.
We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection‐dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time‐integral quantities are considered for scalar outputs and these are shown to superconverge with temporal refinement. Output error estimates are calculated using the adjoint‐weighted residual method, where the unsteady adjoint solution is obtained using a discrete approach with an iterative solver. We investigate the accuracy versus computational cost trade‐off for various approximations of the fine‐space adjoint and find that exact adjoint solutions are accurate but expensive. To reduce the cost, we propose a local temporal reconstruction that takes advantage of superconvergence properties at Radau points, and a spatial reconstruction based on nearest‐neighbor elements. This inexact adjoint yields output error estimates at a computational cost of less than 2.5 times that of the forward problem for the cases tested. The calculated error estimates account for numerical error arising from both the spatial and temporal discretizations, and we present a method for identifying the percentage contributions of each discretization to the output error. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In computational homogenization for periodic composites, the Lippmann-Schwinger integral equation constitutes a convenient formulation to devise numerical methods to compute local fields and their macroscopic responses. Among them, the iterative scheme based on the Neumann series is simple and efficient. For such schemes, a priori global error estimates on local fields and effective property are not available, and this is the concern of this article, which focuses on the simple, but illustrative, conductivity problem in laminated composites. The global error is split into an iteration error, associated with the Neumann series expansion, and a discretization error. The featured nonlocal Green's operator is expressed in terms of the averaging operator, which circumvents the use of the Fourier transform. The Neumann series is formulated in a discrete setting, and the eigendecomposition of the iterated matrix is performed. The ensuing analysis shows that the local fields are computed using a particular subset of eigenvectors, the iteration error being governed by the associated eigenvalues. Quadratic error bounds on the effective property are also discussed. The discretization error is shown to be related to the accuracy of the trapezoidal quadrature scheme. These results are illustrated numerically, and their extension to other configurations is discussed.  相似文献   

7.
To efficiently solve large, dense, complex linear systems that arise in the electric field integral equation (EFIE) formulation of electromagnetic scattering problems, a new modified incomplete LU (ILU) preconditioner is developed and used in the context of the generalised minimal residual iterative method accelerated with the multilevel fast multipole method. The key idea is to perturb the near-field impedance matrix of EFIE with the principle value term of the magnetic field integral equation operator before constructing ILU preconditioners. Numerical experiments indicate that this new perturbation technique is very effective with the ILU preconditioner and the resulted ILU preconditioner can reduce both the iteration number and the computational time substantially.  相似文献   

8.
Since the advent of the fast multipole method, large‐scale electromagnetic scattering problems based on the electric field integral equation (EFIE) formulation are generally solved by a Krylov iterative solver. A well‐known fact is that the dense complex non‐hermitian linear system associated to the EFIE becomes ill‐conditioned especially in the high‐frequency regime. As a consequence, this slows down the convergence rate of Krylov subspace iterative solvers. In this work, a new analytic preconditioner based on the combination of a finite element method with a local absorbing boundary condition is proposed to improve the convergence of the iterative solver for an open boundary. Some numerical tests precise the behaviour of the new preconditioner. Moreover, comparisons are performed with the analytic preconditioner based on the Calderòn's relations for integral equations for several kinds of scatterers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The discretization of differential equations to obtain numerical solutions introduces truncation error (TE). The form of the TE depends on the differential equation, the discretization scheme, and the discretization grid in a fairly complicated fashion. The character and magnitude of the TE determines in part the discrepancy between the approximate and exact solutions to the PDE. In this study, a symbolic manipulator was used to investigate the geometrical dependence of the TE in discrete approximations to Laplace's equation. The effect of various grid irregularities on the leading TE terms was investigated for two discretization schemes. A nine point centered stencil was varied in aspect ratio, skewness, and non-uniformity (irregular spacing). The first scheme was the common centered finite difference (FD) method, applied by transforming to a uniform, orthogonal computational space. The second scheme was the implicit interpolation method ( II ), developed for discretization on irregular grids. Both discretization methods had leading TE that was second order (inversely proportional to the number of grid points squared) and had a sharp rise in TE for skewness angles beyond sixty degrees. The FD method skewness errors were greater than those for the II method, but high aspect ratio errors were less. For non-linear transformations the FD method TE contained second derivatives, the same order as the governing differential equation, while the II method's lowest order TE derivatives were third order. Thus while both methods have the same order of accuracy, the nature of the numerical error in the discrete solution would be different.  相似文献   

10.
Most integral equations of the first kind are ill-posed, and obtaining their numerical solution needs often to solve a linear system of algebraic equations of large condition number. So, solving this system may be difficult or impossible. Since many problems in one- and two-dimensional scattering from perfectly conducting bodies can be modeled by Fredholm integral equations of the first kind, this paper presents an effective numerical expansion-iterative method for solving them. This method is based on vector forms of block-pulse functions. By using this approach, solving the first kind integral equation reduces to solve a recurrence relation. The approximate solution is most easily produced iteratively via the recurrence relation. Therefore, computing the numerical solution does not need to directly solve any linear system of algebraic equations and to use any matrix inversion. Also, the method practically transforms solving of the first kind Fredholm integral equation which is inherently ill-posed into solving second kind Fredholm integral equation. Another advantage is low cost of setting up the equations without applying any projection method such as collocation, Galerkin, etc. To show convergence and stability of the method, some computable error bounds are obtained. Test problems are provided to illustrate its accuracy and computational efficiency, and some practical one- and two-dimensional scatterers are analyzed by it.  相似文献   

11.
The development of a hybrid high order time domain finite element solution procedure for the simulation of two dimensional problems in computational electromagnetics is considered. The chosen application area is that of electromagnetic scattering. The spatial approximation adopted incorporates both a continuous Galerkin spectral element method and a high order discontinuous Galerkin method. Temporal discretisation is achieved by means of a fourth order Runge–Kutta procedure. An exact analytical solution is employed initially to validate the procedure and the numerical performance is then demonstrated for a number of more challenging examples.  相似文献   

12.
The present paper reveals a new computational method for the illposed backward wave problem. The Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown initial data of velocity. Then, we consider a direct regularization to obtain a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us to obtain an analytical solution of regularization type. The sufficient condition of the data for the existence and uniqueness of solution is derived. The error estimate of the regularization solution is provided. Some numerical results illustrate the performance of the new method.  相似文献   

13.
A theory is described which guarantees an upper and lower bound estimate of the discretization error in numerical solutions of elliptic boundary value problems. This method gives bounded global estimates of the error in the energy norm. Pointwise estimates of the error in the solution variable or its derivatives can then be obtained if the numerical solution is exhibiting pointwise monotonic convergence. The versatility of this method is illustrated by its application to numerical solutions from finite element, finite difference and boundary element methods.  相似文献   

14.
We present a variational formulation and a Lippmann-Schwinger equation for the explicit jump discretization of thermal computational homogenization problems, together with fast and memory-efficient matrix-free solvers based on the fast Fourier transform (FFT). Wiegmann and Zemitis introduced the explicit jump discretization for volumetric image-based computational homogenization of thermal conduction. In contrast to Fourier and finite difference-based discretization methods classically used in FFT-based homogenization, the explicit jump discretization is devoid of ringing and checkerboarding artifacts. Originally, the explicit jump discretization was formulated as the discrete equivalent of a boundary integral equation for the jump in the temperature gradient. The resulting equations are not symmetric positive definite, and thus solved by the BiCGSTAB method. Still, the numerical scheme exhibits stable convergence behavior, also in the presence of pores. In this work, we exploit a reformulation of the explicit jump system in terms of harmonically averaged conductivities. The resulting system is intrinsically symmetric positive definite and admits a Lippmann-Schwinger formulation. A seamless integration into existing FFT-based software packages is ensured. We demonstrate our improvements by numerical experiments.  相似文献   

15.
A two-dimensional (2D) time-domain boundary element method (BEM) is presented in this paper for transient analysis of elastic wave scattering by a crack in homogeneous, anisotropic and linearly elastic solids. A traction boundary integral equation formulation is applied to solve the arising initial-boundary value problem. A numerical solution procedure is developed to solve the time-domain boundary integral equations. A collocation method is used for the temporal discretization, while a Galerkin-method is adopted for the spatial discretization of the boundary integral equations. Since the hypersingular boundary integral equations are first regularized to weakly singular ones, no special integration technique is needed in the present method. Special attention of the analysis is devoted to the computation of the scattered wave fields. Numerical examples are given to show the accuracy and the reliability of the present time-domain BEM. The effects of the material anisotropy on the transient wave scattering characteristics are investigated.  相似文献   

16.
In this paper, a method to account for the point‐wise discretization error in the solution for boundary element method is developed. Interval methods are used to enclose the boundary integral equation and a sharp parametric solver for the interval linear system of equations is presented. The developed method does not assume any special properties besides the Laplace equation being a linear elliptic partial differential equation whose Green's function for an isotropic media is known. Numerical results are presented showing the guarantee of the bounds on the solution as well as the convergence of the discretization error. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we develop an a posteriori error analysis for operator decomposition iteration methods applied to systems of coupled semilinear elliptic problems. The goal is to compute accurate error estimates that account for the combined effects arising from numerical approximation (discretization) and operator decomposition iteration. In an earlier paper, we considered ‘triangular’ systems that can be solved without iteration. In contrast, operator decomposition iterative methods for fully coupled systems involve an iterative solution technique. We construct an error estimate for the numerical approximation error that specifically addresses the propagation of error between iterates and provide a computable estimate for the iteration error arising because of the decomposition of the operator. Finally, we develop an adaptive discretization strategy to systematically reduce the discretization error.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a new approach for a posteriori ‘pointwise’ error estimation in the boundary element method. The estimator relies upon evaluation of the residual of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. Extensive computational experiments have been performed for the two-dimensional Laplace equation and the numerical results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also predicted.  相似文献   

19.
Numerical analysis with the Boundary Element Method (BEM) has been used more and more in various engineering fields in recent years. In numerical techniques, however, there are some problems which have not been fully solved even now. The most essential one is the drop in the accuracy of results for internal points near the boundary of the structure, where the singularity of integrands in the boundary integral equation is too strong to be evaluated with the normal numerical method. For the boundary integral equation of stress, this problem became more serious, and the accuracy can be improved only partly, even though very refined boundary elements are used. In this paper, the boundary integral equation is newly formulated using a relative quantity of displacement. In this way, the singularity of boundary integrals is reduced by the order of 1/r, and the accuracy of solution is improved significantly. Furthermore, in order to integrate it more accurately, two kinds of numerical integral methods are newly developed. By using these methods, both displacement and stress can be obtained with excellent accuracy at almost any point in the structure without any numerical difficulty, although the discretization may be comparatively coarse. The generality and practicability of the present formulation and integral methods are confirmed through some examples of three dimensional elastic problems.  相似文献   

20.
An improved numerical method, based on a variational approach with isoparametric finite elements, is presented for the solution of the boundary integral equation formulation of three-dimensional fields. The technique provides higher-order approximation of the unknown function over a bounding surface described by two-parameter, non-planar elements. The integral equation is discretized through the Rayleigh–Ritz procedure. Convergence to the solution for operators having a positive-definite component is guaranteed. Kernel singularities are treated by removing them from the relevant integrals and dealing with them analytically. A successive element iterative process, which produces the solution of the large dense matrix of the complete structure, is described. The discretization and equation solution take place one element at a time resulting in storage and computational savings. Results obtained for classical test models, involving scalar electrostatic potential and vector elastostatic displacement fields, demonstrate the technique for the solution of the Fredholm integral equation of the first kind. Solution of the Fredholm equation of the second kind is to be reported subsequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号