首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this work, a previously proposed Enhanced Assumed Strain (EAS) finite element formulation for thin shells is revised and extended to account for isotropic and anisotropic material non‐linearities. Transverse shear and membrane‐locking patterns are successfully removed from the displacement‐based formulation. The resultant EAS shell finite element does not rely on any other mixed formulation, since the enhanced strain field is designed to fulfil the null transverse shear strain subspace coming from the classical degenerated formulation. At the same time, a minimum number of enhanced variables is achieved, when compared with previous works in the field. Non‐linear effects are treated within a local reference frame affected by the rigid‐body part of the total deformation. Additive and multiplicative update procedures for the finite rotation degrees‐of‐freedom are implemented to correctly reproduce mid‐point configurations along the incremental deformation path, improving the overall convergence rate. The stress and strain tensors update in the local frame, together with an additive treatment of the EAS terms, lead to a straightforward implementation of non‐linear geometric and material relations. Accuracy of the implemented algorithms is shown in isotropic and anisotropic elasto‐plastic problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The main aim of this contribution is to provide a mixed finite element for small strain elasto‐viscoplastic material behavior based on the least‐squares method. The L2‐norm minimization of the residuals of the given first‐order system of differential equations leads to a two‐field functional with displacements and stresses as process variables. For the continuous approximation of the stresses, lowest‐order Raviart–Thomas elements are used, whereas for the displacements, standard conforming elements are employed. It is shown that the non‐linear least‐squares functional provides an a posteriori error estimator, which establishes ellipticity of the proposed variational approach. Further on, details about the implementation of the least‐squares mixed finite elements are given and some numerical examples are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A strategy for a two‐dimensional contact analysis involving finite strain plasticity is developed with the aid of variable‐node elements. The variable‐node elements, in which nodes are added freely where they are needed, make it possible to transform the non‐matching meshes into matching meshes directly. They thereby facilitate an efficient analysis, maintaining node‐to‐node contact during the contact deformation. The contact patch test, wherein the contact patch is constructed out of variable‐node elements, is thus passed, and iterations for equilibrium solutions reach convergence faster in this scheme than in the conventional approach based on the node‐to‐surface contact. The effectiveness and accuracy of the proposed scheme are demonstrated through several numerical examples of elasto‐plastic contact analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
From the constraint imposition aspects in 3D to friction regularization, various ideas are exposed in this paper. A variation of the Rockafellar Lagrangian is proposed which results in continuous second‐order derivatives if Lagrange multiplier estimates are greater or equal than one. This fact allows the adoption of a full second‐order (i.e. Lagrange–Newton) method avoiding sequential unconstrained minimization techniques. An algorithm for global and local contact detection is presented which is developed for dealing with large step sizes typical of implicit methods. A modified constraint definition to deal with non‐smooth situations is presented. Aspects of friction implementation, including a regularization scheme which ensures stepwise objectivity, are detailed. Finally, several illustrative examples are carried out with success. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
An Eulerian finite element formulation for quasi‐state one way coupled thermo‐elasto‐plastic systems is presented. The formulation is suitable for modeling material processes such as welding and laser surfacing. In an Eulerian frame, the solution field of a quasi‐state process becomes steady state for the heat transfer problem and static for the stress problem. A mixed small deformation displacement elasto‐plastic formulation is proposed. The formulation accounts for temperature dependent material properties and exhibits a robust convergence. Streamline upwind Petrov–Galerkin (SUPG) is used to remove spurious oscillations. Smoothing functions are introduced to relax the non‐differentiable evolution equations and allow for the use of gradient (stiffness) solution scheme via the Newton–Raphson method. A 3‐dimensional simulation of a laser surfacing process is presented to exemplify the formulation. Results from the Eulerian formulation are in good agreement with results from the conventional Lagrangian formulation. However, the Eulerian formulation is approximately 15 times faster than the Lagrangian. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The purpose of this paper is to present an adaptive finite element–boundary element method (FEM–BEM) coupling method that is valid for both two‐ and three‐dimensional elasto‐plastic analyses. The method takes care of the evolution of the elastic and plastic regions. It eliminates the cumbersome of a trial and error process in the identification of the FEM and BEM sub‐domains in the standard FEM–BEM coupling approaches. The method estimates the FEM and BEM sub‐domains and automatically generates/adapts the FEM and BEM meshes/sub‐domains, according to the state of computation. The results for two‐ and three‐dimensional applications in elasto‐plasticity show the practicality and the efficiency of the adaptive FEM–BEM coupling method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents new achievements in the extended finite element modeling of large elasto‐plastic deformation in solid problems. The computational technique is presented based on the extended finite element method (X‐FEM) coupled with the Lagrangian formulation in order to model arbitrary interfaces in large deformations. In X‐FEM, the material interfaces are represented independently of element boundaries, and the process is accomplished by partitioning the domain with some triangular sub‐elements whose Gauss points are used for integration of the domain of elements. The large elasto‐plastic deformation formulation is employed within the X‐FEM framework to simulate the non‐linear behavior of materials. The interface between two bodies is modeled by using the X‐FEM technique and applying the Heaviside‐ and level‐set‐based enrichment functions. Finally, several numerical examples are analyzed, including arbitrary material interfaces, to demonstrate the efficiency of the X‐FEM technique in large plasticity deformations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Experimental evidence of certain adhesive materials reveals elastic strains, plastic strains and hardening. Furthermore, a pronounced strength difference effect between tension, torsion or combined loading is observed. For simulation of these phenomena, a yield function dependent on the first and second basic invariants of the related stress tensor in the framework of elasto‐plasticity is used in this work. A plastic potential with the same mathematical structure is introduced to formulate the evolution equation for the inelastic strains. Furthermore, thermodynamic consistency of the model equations is considered, thus rendering some restrictions on the material parameters. For evolution of the strain like internal variable, two cases are considered, and the consequences on the thermodynamic consistency and the numerical implementation are extensively discussed. The resulting evolution equations are integrated with an implicit Euler scheme. In particular, the reduction of the resulting local problem is performed, and for the finite‐element equilibrium iteration, the algorithmic tangent operator is derived. Two examples are presented. The first example demonstrates the capability of the model equations to simulate the yield strength difference between tension and torsion for the adhesive material Betamate 1496. A second example investigates the deformation evolution of a compact tension specimen with an adhesive zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The asymptotic expansion homogenization (AEH) approach has found wide acceptance for the study of heterogeneous structures due to its ability to account for multi‐scale features. The emphasis of the present study is to develop consistent AEH numerical formulations to address elasto‐plastic material response of structures subjected to short‐duration transient loading. A second‐order accurate velocity‐based explicit time integration method, in conjunction with the AEH approach, is currently developed that accounts for large deformation non‐linear material response. The approach is verified under degenerate homogeneous conditions using existing experimental data in the literature and its ability to account for heterogeneous conditions is demonstrated for a number of test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a Stochastic Finite Element Method (SFEM) for non‐linear elasto‐plastic bodies, as a generalization of the SFEM for linear elastic bodies developed by Ghanem and Spanos who applied the Karhunen–Loeve expansion and the polynomial chaos expansion for stochastic material properties and field variables, respectively. The key feature of the proposed SFEM is the introduction of two fictitious bodies whose behaviours provide upper and lower bounds for the mean of field variables. The two bounding bodies are rigorously obtained from a given distribution of material properties. The deformation of an ideal elasto‐plastic body of the Huber–von Mises type is computed as an illustrative example. The results are compared with Monte‐Carlo simulation. It is shown that the proposed SFEM can satisfactorily estimate means, variances and other probabilistic characteristics of field variables even when the body has a larger variance of the material properties. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A computational scheme for the analysis and optimization of quasi‐static thermo‐mechanical processes is presented in this paper. In order to obtain desirable mechanical transformations in a workpiece using a thermal treatment process, the optimal control parameters need to be determined. The problem is addressed by posing the process as a decoupled thermo‐mechanical finite element problem and performing an optimization using gradient methods. The forward problem is solved using the Eulerian formulation since it is computationally more efficient compared to an equivalent Lagrangian formulation. The design sensitivities required for the optimization are developed analytically using direct differentiation. This systematic design approach is applied to optimize a laser forming process. The objective is to maximize the angular distortion of a specimen subject to the constraint that the phase transition temperature is not exceeded at any point in the model. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The mean dilatation method effectively involves bi‐linear displacements and a constant pressure and is often known as the Q1‐P0 formulation. Its non‐linear implementation was originally derived as a three‐field formulation which included the volume ratio via the Jacobian, J, of the deformation gradient as an additional separate variable. However, the latter term was not directly required in the numerical implementation once J was assumed constant along with the pressure. This formulation will here be termed the non‐linear Q1‐P0 method. It is known to give good solutions for many practical large‐strain elasto‐plastic problems. However, for some problems, it has been shown to be prone to severe ‘hour‐glassing’. With a view to remedying this situation, we here re‐visit the three‐field formulation and derive a modified form, which although variationally valid, is over‐stiff in comparison to the original procedure (here simply called the Q1‐P0 method). However, the concepts lead to a natural method for stabilising the Q1‐P0 technique. The associated tangent stiffness matrix is symmetric. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Implicit time integration algorithm derived by Simo for his large‐deformation elasto‐plastic constitutive model is generalized, for the case of isotropy and associative flow rule, towards viscoplastic material behaviour and consistently differentiated with respect to its input parameters. Combining it with the general formulation of design sensitivity analysis (DSA) for non‐linear finite element transient equilibrium problem, we come at a numerically efficient, closed‐form finite element formulation of DSA for large deformation elasto‐plastic and elasto‐viscoplastic problems, with various types of design variables (material constants, shape parameters). The paper handles several specific issues, like the use of a non‐algorithmic coefficient matrix or sensitivity discontinuities at points of instantaneous structural stiffness change. Computational examples demonstrate abilities of the formulation and quality of results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The paper deals with two essential and related closely processes involved in the finite element slope stability analysis in two‐dimensional problems, i.e. computation of the factors of safety (FOS) and location of the critical slide surfaces. A so‐called ?v inequality, sin ??1 – 2v is proved for any elasto‐plastic material satisfying Mohr–Coulomb's yield criterion. In order to obtain an FOS of high precision with less calculation and a proper distribution of plastic zones in the critical equilibrium state, it is stated that the Poisson's ratio v should be adjusted according to the principle that the ?v inequality always holds as reducing the strength parameters c and ?. While locating the critical slide surface represented by the critical slide line (CSL) under the plane strain condition, an initial value problem of a system of ordinary differential equations defining the CSL is formulated. A robust numerical solution for the initial value problem based on the predictor–corrector method is given in conjunction with the necessary and sufficient condition ensuring the convergence of solution. A simple example, the kinematic solution of which is available, and a challenging example from a hydraulic project in construction are analysed to demonstrate the effectiveness of the proposed procedures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper an integrated procedure for three‐dimensional (3D) structural analyses with the finite cover method (FCM) is introduced. In the pre‐process of this procedure, the geometry of a structure is modelled by 3D‐CAD, followed by digitization to have the corresponding voxel model, and then the structure is covered by a union of mathematical covers, namely a mathematical mesh independently generated for approximation purposes. Since the mesh topology in the FCM does not need to conform to the physical boundaries of the structure, the mesh can be regular and structured. Thus, the numerical analysis procedure is free from the difficulties mesh generation typically poses and, in this sense, enables us to realize the mesh‐free analysis. After formulating the FCM with interface elements for the static equilibrium state of a structure, we detail the procedure of the finite cover modelling, including the geometry modelling with 3D‐CAD and the identification of the geometry covered by a regular mesh for numerical integration. Prior to full 3D modelling and analysis, we present a simple numerical example to confirm the equivalence of the performance of the FCM and that of the standard finite element method (FEM). Finally, representative numerical examples are presented to demonstrate the capabilities of the proposed analysis procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A stabilized, Galerkin finite element formulation for modeling the elasto‐visco‐plastic response of quasi‐steady‐state processes, such as welding, laser surfacing, rolling and extrusion, is presented in an Eulerian frame. The mixed formulation consists of four field variables, such as velocity, stress, deformation gradient and internal variable, which is used to describe the evolution of the material's resistance to plastic flow. The streamline upwind Petrov–Galerkin method is used to eliminate spurious oscillations, which may be caused by the convection‐type of stress, deformation gradient and internal variable evolution equations. A progressive solution strategy is introduced to improve the convergence of the Newton–Raphson solution procedure. Two two‐dimensional numerical examples are implemented to verify the accuracy of the Eulerian formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we analyze an algorithm for the quasistatic evolution of the mechanical state of an elasto‐piezoelectric body with damage. Both damage, caused by the development and the growth of internal microcracks, and piezoelectric effects, are included in the model. The mechanical problem is expressed as an elliptic system for the displacement field coupled with a non‐linear parabolic partial differential equation for the damage field and a linear partial differential equation for the electric potential. The variational formulation leads to a coupled system composed of two linear variational equations for the displacement field and the electric potential, and a non‐linear parabolic variational equation for the damage field. The existence of a unique weak solution is stated. Then, a fully discrete scheme is introduced by using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, some numerical simulations are performed, in one, two and three dimensions, to demonstrate the accuracy of the scheme and the behaviour of the solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In the context of the time‐finite element method, algorithmic stresses, which enable the conservation of energy, are designed for temporal integrators derived from the midpoint and trapezoidal schemes. This is achieved through an appropriate modification of the standard midpoint and trapezoidal quadrature rules used for the numerical integration of time integrals. Either scalar scaling or vectorial adjustments can be employed for the modification, and well‐designed simple tests allow to investigate the quality of these different strategies of energy‐conserving enforcements. Numerical examples with semi‐discrete elasto‐dynamics problems are presented to show the superior stability of energy‐conserving schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we use the variational formulation of elasto‐plastic updates proposed by Ortiz and Stainier (Comput. Methods Appl. Mech. Eng. 1999; 171 :419– 444) in the context of consistent time integration schemes. We show that such a formulation is well suited to obtain a general expression of energy momentum conserving algorithms. Moreover, we present numerical examples that illustrate the efficiency of our developments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号