首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Polyimide‐g‐nylon 6 copolymers were prepared by the polymerization of phenyl 3,5‐diaminobenzoate with several diamines and dianhydrides with a one‐step method. The polyimides containing pendant ester moieties were then used as activators for the anionic polymerization of molten ε‐caprolactam. Nylon 6‐b‐polyimide‐b‐nylon 6 copolymers were prepared by the use of phenyl 4‐aminobenzoate as an end‐capping agent in the preparation of a series of imide oligomers. The oligomers were then used to activate the anionic polymerization of ε‐caprolactam. In both the graft and copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120°C to generate N‐acyllactam moieties, which activated the anionic polymerization. All the block copolymers had higher moduli and tensile strengths than those of nylon 6. However, their elongations at break were much lower. The graft copolymers based on 2,2′‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride and 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane displayed elongations comparable to that of nylon 6 and the highest moduli and tensile strengths of all the copolymers. The thermal stability, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide into both the graft and block copolymers. The graft and block copolymers also exhibited improved melt processability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 300–308, 2006  相似文献   

2.
Polyamide‐6 (PA6)/polybutadiene (PB) block copolymers were synthesized with macroactivators (MAs) based on hydroxyl‐terminated polybutadiene functionalized with diisocyanates and having three N‐acyllactam chain‐growing centers per molecule. Two different diisocyanates, hexamethylene diisocyanate and isophorone diisocyanate, were applied as precursors for the MAs. The sodium salt of ε‐caprolactam was chosen as an initiator. The influence of the MA type and concentration on the anionic ring‐opening polymerization of ε‐caprolactam at 180°C was studied. A large percentage of the gel fraction in the copolymers was estimated, indicating crosslinked macromolecules. The structure and phase behavior of the copolymers were investigated with differential scanning calorimetry, wide‐angle X‐ray scattering, thermogravimetric analysis, and dynamic mechanical thermal analysis. In the copolymers, only the PA6 chains crystallized, and the crystallinity depended on the PB content. Different glass‐transition temperatures for the PB blocks and PA6 blocks were observed, indicating microphase separation in the copolymers. The mechanical properties of the copolymers were studied by notched impact testing and hardness measurements. The impact strength increased linearly with the soft component concentration up to 10 wt % and reached values six times higher than those of the PA6 homopolymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 711–717, 2003  相似文献   

3.
The structure, crystallization, and phase behavior of nylon6‐b‐polytetrahydrofuran‐b‐nylon6 triblock copolymers synthesized via activated anionic polymerization have been studied. The composition, molecular weight of polytetrahydrofuran (PTHF) soft block, and type of polymeric activators (PACs) have been varied. Differential Scanning Calorimetry (DSC), Wide‐Angle X‐ray Diffraction (WAXD), Transmission Electron Microscopy (TEM), and Polarized Light Microscopy (PLM) experiments have revealed that in triblock copolymers only the nylon‐6 component crystallizes while PTHF segments are amorphous. The soft blocks do not alter the spherulitic crystalline structure of nylon‐6 and hard blocks crystallize in the α‐modification. The degree of crystallinity decreases with increasing PTHF concentration. The phase behavior has been investigated by Dynamic Mechanical Thermal Analysis (DMTA). Two different glass transition temperatures (Tg) for all samples have been observed. This indicates that nylon‐6 and PTHF segments are not molecularly miscible and the copolymers are microphase separated. The mechanical properties of the copolymers synthesized have been evaluated. Nylon‐6 copolymers with soft block concentrations up to 10 w/w %, exhibit improved notched impact strength in comparison to the nylon‐6 homopolymer, retaining relatively high hardness and tensile strength. All copolymers possess low water absorption and good thermal stability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1448–1456, 2002; DOI 10.1002/app.10448  相似文献   

4.
A series of polyurethane tri‐block copolymers were synthesized by reacting a 4,4′‐methylenebis(phenyl isocyanate) (MDI)‐endcapped poly(tetramethylene oxide) (PTMO, Mn = 2,000 g/mol) with a monoamine‐diamide (6T6m) hard segment (HS). The concentration of the HS in the copolymer was varied between 9 and 33 wt % by changing the length of the soft mid‐block segment. The structure of the copolymers was analyzed by nuclear magnetic resonance, the amide crystallinity was investigated by Fourier transform infra‐red and the thermal properties were studied by differential scanning calorimetry. The mechanical and elastic properties of the tri‐block copolymer were subsequently explored by dynamic mechanical analysis, compression set and tensile experiments, and the melt rheological behavior was studied by a parallel plate method. The amide end groups displayed a high crystallinity and the modulus of the tri‐block copolymers was relatively high. The fracture strain increased strongly with the molecular weight and the copolymers demonstrated a ductile fracture behavior for molecular weights above 6000 g/mol. Good compression set values were obtained for the tri‐block copolymers despite their low molecular weight. In the molten state, the tri‐block polymers displayed a gelling effect at low frequencies, which was believed to be a result of a clustering of the end‐segments. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
The blends of thermoplastic polyether‐based urethane elastomer (TPEU) and monomer casting polyamide 6 (MCPA6) were prepared using ε‐caprolactam (CL) as a reactive solvent, and CL sodium as a catalyst at various TPEU contents (2.5–15 phr by weight). In situ anionic ring‐opening polymerization and in situ compatibilization of TPEU/MCPA6 blends were realized in one step. The dissociated TPEU chains acted as macroactivator to initiate MCPA6 chain growth from the TPEU chains. The formed block copolymers (TPEU‐co‐MCPA6), which have been confirmed by Fourier transform infrared spectroscopy and 1H‐NMR analysis, improved the compatibility between TPEU and MCPA6. In addition, both differential scanning calorimetry and dynamic mechanical analysis studies revealed that the crystallinity temperature, melting temperature, the degree of crystallization, and the glass‐transition temperature of MCPA6 component remarkably shifted to a low temperature with increasing TPEU content. Mechanical properties demonstrated that the impact strength and the elongation‐at‐break of the blends significantly increased with the content of TPEU, whereas a progressive decrease occurred in tensile strength, flexural strength, and flexural modulus. WAXD spectra showed that only α‐form crystal of PA6 component existed in the TPEU/MCPA6 blends. Furthermore, scanning electron microscopes (SEM) of the cryo‐fractured surfaces confirmed a substantially improved compatibility, and reflected a seemly single‐phase morphology. POLYM. ENG. SCI., 46: 1196–1203, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
This article is focused on the synthesis of a new type of graft PA6, which contained alternating styrene/maleimide copolymer main chains and PA6 grafts, by anionic polymerization. The preprepared styrene/maleimide copolymers with acylated caprolactam (ACL) pendants were used as macroactivators for the polymerization of molten ε‐caprolactam (CL). Because of the low activating energy for the initial nucleophilic attack of CL anion on the N‐ACL, the polymerization took place in a few minutes. The macroactivators were characterized by 1H‐NMR. And the thermal properties, dimensional stability, crystallinity, and solvent resistance ability of the graft PA6 were studied, using DSC, TGA, XRD, water absorption measurement, and solubility experiment. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

8.
Biodegradable, amphiphilic, linear (diblock and triblock) and star‐shaped (three‐armed and four‐armed) poly[(ethylene glycol)‐block‐(ε‐caprolactone)] copolymers (PEG–PCL copolymers) were synthesized by ring‐opening polymerization of ε‐caprolactone (CL) with stannous octoate as a catalyst, in the presence of monomethoxypoly(ethylene glycol) (MPEG), poly(ethylene glycol) (PEG), three‐armed poly(ethylene glycol) (3‐arm PEG) or four‐armed poly(ethylene glycol) (4‐arm PEG) as an initiator, respectively. The monomer‐to‐initiator ratio was varied to obtain copolymers with various PEG weight fractions in a range 66–86%. The molecular structure and crystallinity of the copolymers, and their aggregation behavior in the aqueous phase, were investigated by employing 1H‐NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry, as well as utilizing the observational data of gel–sol transitions and aggregates in aqueous solutions. The aggregates of the PEG–PCL block copolymers were prepared by directly dissolving them in water or by employing precipitation/solvent evaporation technique. The enthalpy of fusion (ΔHm), enthalpy of crystallization (ΔHcrys) and degrees of crystallinity (χc) of PEG blocks in copolymers and the copolymer aggregates in aqueous solutions were influenced by their PEG weight fractions and molecular architecture. The gel–sol transition properties of the PEG–PCL block copolymers were related to their concentrations, composition and molecular architecture. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
This article discusses the rate of water vapor transmission (WVT) through monolithic films of segmented block copolymers based on poly(ethylene oxide) (PEO) and monodisperse crystallisable tetra‐amide segments. The polyether phase consisted of hydrophilic PEO or mixtures of PEO and hydrophobic poly(tetramethylene oxide) (PTMO) segments. The monodisperse tetra‐amide segments (T6T6T) were based on terephthalate units (T) and hexamethylenediamine (6). By using monodisperse T6T6T segments the crystallinity in the copolymers was high (~ 85%) and, therefore, the amount of noncrystallised T6T6T dissolved in the polyether phase was minimal. The WVT was determined by using the ASTM E96BW method, also known as the inverted cup method. By using this method, there is direct contact between the polymer film and the water in the cup. The WVT experiments were performed in a climate‐controlled chamber at a temperature of 30°C and a relative humidity of 50%. A linear relation was found between the WVT and the reciprocal film thickness of polyether‐T6T6T segmented block copolymers. The WVT of a 25‐μm thick film of PTMO2000‐based copolymers was 3.1 kg m?2 d?1 and for PEO2000‐based copolymers 153 kg m?2 d?1. Of all the studied copolymers, the WVT was linear related to the volume fraction of water absorbed in the copolymer to the second power. The results were explained by the absorption‐diffusion model. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A series poly(ε‐caprolactam‐co‐ε‐caprolactone) copolymers (PEAs) were investigated regarding the changes in the structure and characteristics in the context of the variation of temperature (in the range 173–373 K) and ε‐caprolactone content (from 0.0 to 25.0 wt%) in the comonomers mixture. Anionic copolymerization‐rotational molding combined technique was used for obtaining of these amide‐rich copolymers, semicrystalline and sensitive to the electric stimulus by polar amide groups, and potential degradable by ester units. For dielectric measurements was taken into account also the variation of frequency in the range of 100–106 Hz. The modifications observed by fourier transform infrared spectroscopy (FTIR), broad dielectric spectroscopy (BDS), X‐ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM) supporting the increase/decrease of the homogeneity in the copolymers structure induced by variation of the chosen parameters. It was observed that the polymers films show Brill transition on heating. An approximately 15.0% ester residues and about 70% amide component from sample PEA20 are distributed in the “near surface” region. At low frequencies (i.e., 1 × 100 Hz) the increasing of temperature over 240 K leads to a temperature dependence of ε′′. Over 280 K (at high frequency) and 300 K (at low frequency), the α relaxation is visible as a broad shoulder for all samples. The results are presented comparatively. POLYM. ENG. SCI., 59:465–477, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
A novel acetylated anhydroglucose oligomer (AGU‐oligomer), prepared by acid catalyzed transglycosidation of potato starch triacetate and ethylene glycol, was used as a multifunctional coinitiator for the ring‐opening polymerization of ε‐caprolactone (ε‐CL). The polymers were synthesized using different weight ratios of the starting materials and were characterized by NMR, SEC, and MALLS. The results confirmed the expected P(AGU/CL) polymer structure, namely a ‘comb‐like’ graft‐copolymer having the AGU oligomer as backbone with PCL grafts of variable chain lengths (LCL = 4–21). Thermal and mechanical properties of graft‐copolymers with different ε‐CL block lengths were examined. By changing the graft length, crystallinity was controlled and amorphous polymers were obtained with AGU‐oligomer contents higher than 50 wt %. The tensile properties varied with the composition and a copolymer having 40 wt % of AGU‐oligomer behaved like soft elastomer, showing high elongation at break. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1633–1641, 2006  相似文献   

12.
High‐performance shape‐memory polyurethane block copolymers, prepared with two types of poly(tetramethylene glycol) (PTMG) used as soft segments, were investigated for their mechanical properties. Copolymers with a random or block soft‐segment arrangement had higher stresses at break and elongations at break than those with only one kind of PTMG. Random copolymers with fewer interchain interactions showed higher elongation than block copolymers. All the copolymers had shape‐recovery ratios higher than 80%. In dynamic mechanical testing, the glass‐transition behavior clearly depended on the soft‐segment arrangement: random copolymers had only one glass‐transition peak, whereas block copolymers showed two separate glass‐transition peaks. Overall, the control of the soft‐segment arrangement plays a vital role in the development of high‐performance shape‐memory polyurethane. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2410–2415, 2004  相似文献   

13.
A series of amine‐functionalized block copolymers, poly(caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), were synthesized by ring‐opening bulk polymerization (ROP) of ε‐caprolactone (ε‐CL) initiated through the hydroxyl end of the amino poly(ethylene glycol) (PEG) used as a macroinitiator in the presence of stannous 2‐ethylhexonoate [Sn(Oct)2]. The polymerization and end functionality of the polymer were studied by different physicochemical techniques (1H NMR, Fourier transform infrared and X‐ray photoelectron spectroscopy, gel permeation chromatography and thermogravimetric analysis). Thermal, crystalline and mechanical properties of the polymer were thoroughly analyzed using differential scanning calorimetry, wide‐angle X‐ray diffractometry and tensile testing, respectively. The results showed a linear improvement in crystallinity and mechanical properties of the polymer with the content of PEG. Thus the synthesized functional polymers can be used as excellent biomaterials for the delivery of polyanions, as well as macroinitiators for the synthesis of A–B–C‐type block copolymers. Copyright © 2006 Society of Chemical Industry  相似文献   

14.
Summary Block copolymers of nylon 6 with 10, 15 and 20% of poly (ether-esteramide) as elastomeric phase were synthesized by reactive processing. These materials are obtained by the anionic polymerization of -caprolactam in the presence of a linear prepolymer of poly (ether-esteramide) with a Grignard reagent. Differential Scanning Calorimetry (DSC), torque rheometry and formic acid test were used to characterize the obtained copolymers. The results showed that block copolymers of Nylon 6 were formed. The melting temperature and the crystallinity of the copolymer decreased when the elastomer phase content increased. Two Tgs appeared; the blocks of the copolymers were not miscible. We calculate the size of nylon 6 blocks for each composition. The physical-mechanical behavior was also studied. More flexible materials were obtained when the soft phase content in the copolymer was increased. The results of this work provide an important information for the synthesis of this kind of materials by reactive extrusion.  相似文献   

15.
A series of composites of PPO/PA 6 with improved toughness were synthesized by using ε‐caprolactam as a reactive solvent. Inserting minor PPO macromolecules (1–3 wt %) into PA 6 matrix obviously reduced the crystallinity of PA6. Two crystallization temperatures were found when 6 wt % PPO was added. SEM revealed that the phase morphology of the composites could be manipulated by varying the content of PPO in PA 6. As a consequence, the impact strength and the elongation of PPO/PA6 were improved with maintenance of tensile strength when quite small content of PPO (1–3 wt %) was incorporated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

16.
An attempt has been made to investigate the effect of the block length of hydrophilic segments on the structure and mass transfer properties of segmented polyurethane (HSPU). Three different block lengths of hydrophilic poly(ethylene glycol) (PEG) segments were used, namely PEG‐200, PEG‐2000 and PEG‐3400, where the numbers indicate the molecular weight of the PEG in g mol?1. The HSPU were characterized using Fourier‐transform infrared (FTIR) spectroscopy, wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and tensile testing. Mass transfer properties were measured by sorption and water vapour flux (WVF) measurements. The control sample polyurethanes without PEG and a sample with PEG‐200 showed amorphous structure and an unclear phase separation as detected by WAXD, DSC and DMTA. There is evidence that the introduction of PEG blocks into the polyurethane matrix aids soft‐segment crystallization. The percentage crystallinity of soft segments was the highest with PEG‐2000 and an increase of PEG block length to 3400 g mol?1 resulted in a decrease in crystallinity. Mechanically, polyurethane without PEG is tough while percentage strain at maximum load increased with increasing block length of PEG. In addition, sorption and WVF increased linearly with increasing PEG block length and with temperature. The permeability of such HSPUs is a function of temperature and showed a good fit to an Arrhenius form. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
The isothermal crystallization kinetics of biodegradable blends made of poly(lactic acid) (PLA) and poly(ε‐caprolactone) (PCL) compatibilized with two different low molecular weight block copolymers, that is, ε‐caprolactone/tetramethylene ether glycol and ε‐caprolactone/aliphatic polycarbonate (CB), was done. Blends were prepared by melt mixing in an extruder, while isothermal crystallization kinetics and morphologies were investigated by thermal (differential scanning calorimetry) and thermo‐optical (quantitative polarized light optical microscopy [qPLOM]) quantitative methods. Data were analyzed using the Avrami equation, revealing 2D and 3D growth and simultaneous heterogeneous nucleation. The presence of low molecular weight compatibilizers, that is, 2,000 g mol?1, accelerated the PLA crystallization rate by two to threefold when compared with neat PLA, with high degrees of crystallinity (40–43%) as confirmed by PLOM images. The activation energy (Ea) showed that PCL inhibits PLA crystallization; however, the addition of block copolymers used as compatibilizers of the blends reduced Ea values, increasing the chain mobility of PLA and thus increasing the crystallization rate. POLYM. ENG. SCI., 59:E161–E169, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
In this article, a new kind of biodegradable poly(ε‐caprolactone)‐poly(ethylene glycol)‐poly(ε‐caprolactone)‐based polyurethane (PCEC‐U) copolymers were successfully synthesized by melt‐polycondensation method from ε‐caprolactone (ε‐CL), poly(ethylene glycol) (PEG), 1,4‐butanediol (BD), and isophorone diisocyanate (IPDI). The obtained copolymers were characterized by 1H‐nuclear magnetic resonance (1H‐NMR), FTIR, and gel permeation chromatography (GPC). Thermal properties of PCEC‐U copolymers were studied by DSC and TGA/DTG under nitrogen atmosphere. Water absorption and hydrolytic degradation behavior of these copolymers were also investigated. Hydrolytic degradation behavior was studied by weight loss method. 1H‐NMR and GPC were also used to characterize the hydrolytic degradation behavior of PCEC‐U copolymers. The molecular weight of PCL block and PEG block in soft segment and the content of hard segment strongly affected the water absorption and hydrolytic degradation behavior of PCEC‐U copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A new PDMS macroinitiator is proposed for the anionic ring‐opening polymerization of lactams. This α,ω‐dicarbamoyloxy caprolactam PDMS macroinitiator was readily obtained in quantitative yield, by an original synthesis scheme in two steps, which involved the scarcely reported reaction of isocyanates with silanol groups. It was then shown that this bifunctional macroinitiator enabled to synthesize triblock copolymers PA12‐b‐PDMS‐b‐PA12 by polymerization of lauryl lactam (LL) at high temperature (200°C) in inert atmosphere under conditions compatible with reactive extrusion processes. Another related high molar weight α,ω‐diacyllactam PDMS macroinitiator was also successfully used in the polymerization of LL under the same conditions, therefore overcoming the limitations formerly reported for this type of macroinitiators during the polymerization ε‐caprolactam (ε‐CL) at a much lower temperature (80°C). Triblock copolymers with a wide range of PA12 /molar weights (Mn: ~ 10,800–250,000 Da) were eventually obtained by using both types of macroinitiators. DMTA and DSC analyses showed that their thermal properties were strongly dependent upon their respective contents in soft and hard blocks. Such triblock copolymers already appear very promising for the highly effective in situ compatibilization of PA12/PDMS blends as shown by recent complementary results obtained in our laboratory. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 2818–2831, 2006  相似文献   

20.
A gradient extraction method was developed and used for a synthetic leather made of polyurethane (PU) and microfiber polycaprolactam (PA‐6), by which the two components were separated using DMF and formic acid as solvents, respectively. Their chemical structure was confirmed by FTIR spectra, and the result showed that the PU is a kind of polyester polyurethane with phenylene rings in the molecule. The condensed phase structure was analyzed using X‐ray diffraction (XRD). The crystallinity of the PA‐6 is about 65.6%, and for the PU, there was not distinct crystalline character shown in the XRD pattern but a phase separation structure of hard block‐soft block with the hard domains content about 58.7%. SEM images showed that the PA‐6 microfibers transfixing the PU matrix form a net bundle structure, and there are two kinds of porous structures in the synthetic leather, with one type of pore sized 5–80 μm between the components of PU and PA‐6, and the other in PU matrix with a size of 0.1–2 μm. The multipores run through the synthetic leather as three‐dimensional channels, benefit for transportation of air, water, dyes, and so on. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 903–908, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号