首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corona discharge was explored as a means of forming chemically active sites on the surface of biaxially oriented polypropylene (BOPP) film. The active species formed in air was used to induce graft copolymerization of acrylic amide (AAM) in aqueous solution. The surface structure, hydrophilicity and adhesion of the grafted BOPP film were characterized by the extent of grafting, electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), peel strength and contact angle measurements. Surface graft‐copolymerization of AAM onto BOPP film by corona discharge in air can be carried out with high efficiency. With increasing copolymerization time, the degree of grafting of AAM onto BOPP increases. The degree of grafting achieved a relatively high value of 2.13 wt% for the conditions of 1 min corona discharge and a copolymerization reaction time of 2.5 hr in 20% AAM aqueous solution at 70°C. After corona discharge grafting, the contact angle of water on the BOPP film decreased and the peel strength increased compared with those for ungrafted BOPP film. The hydrophilicity and adhesion of BOPP were improved by surface graft copolymerization with AAM induced by corona discharge.  相似文献   

2.
Chemical composition, morphology, and crystalline structure of low density polyethylene (LDPE) films surface grafted with acrylic acid (AA) using corona discharge were studied by attenuated total reflection infrared (ATR-IR), electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) techniques. The grafted film surface is covered with grafted chains. After grafting for 3.0 h in 20% aqueous solution of AA, the depth of the grafted layer is more than 10 nm. A grain structure was observed on the grafted surfaces which was probably caused by the isolated dispersion of active sites generated by corona discharge, and these active sites initiated the graft copolymerization. However, surfaces of grafted films were smoother than that of ungrafted ones. DSC curves of grafted films show a small peak at about 100°C due to vaporization of adsorbed water. The longer the graft copolymerization time, i.e. the higher the graft degree of AA on LDPE, the higher the amount of adsorbed water. The position of each peak in WAXD patterns, crystal axial length, crystal plane distance and crystal grain size remain almost unchanged during the graft copolymerization time of 2.0 h. However, when the graft copolymerization time reaches 3.0 h, twin peaks at about 21.4° and 22.0° are observed, indicating that a different crystal form is formed at longer copolymerization time, i.e. at a higher graft degree.  相似文献   

3.
Hydroxyethylmethacrylate (HEMA) is considered to be one of the important vinyl monomers. The ability of polyhydroxyethyl‐methacylate (PHEMA) graft sites to consecutive chemical modification makes the use of nylon‐6 fibers grafted with PHEMA a feasible bed for immobilization of a wide range of biologically active reagents, specially enzymes, drugs, cells, and immunadsorbents. Stemming from the above discussions, in this article, the graft copolymerization of HEMA onto modified nylon‐6 fibers containing Polydiallyldimethylammonium chloride (PDADMAC) in the presence of Cu2+–K2S2O8 as a redox initiating system was carried out, with very high rate and almost without homopolymer formation. The factors affecting the grafting reaction (monomer, K2S2O8 and cupric ion concentrations, the amount of PDADMAC as well as the reaction temperature) were studied. Kinetic investigation revealed that the rate of grafting (Rp) of HEMA onto modified nylon‐6 fibers is proportional to [HEMA]1, [CuSO4.5H2O] 0.7, [PDADMAC]0.4, and [K2S2O8]1.4. The overall activation energy was calculated (71 KJ/mol). The fine structure, surface topography, thermal and electrical properties of parent and grafted nylon‐6 fibers were investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3788–3796, 2007  相似文献   

4.
Acrylic acid (AAc) and 2‐hydroxyethyl methacrylate (HEMA) mixtures were simultaneously grafted onto the surfaces of polydimethylsiloxane (PDMS) films using a two‐step oxygen plasma treatment (TSPT). The first step of this method includes: oxygen plasma pretreatment of the PDMS films, immersion in HEMA/AAc mixtures, removal from the mixtures, and drying. The second step was carried out by plasma copolymerization of preadsorbed reactive monomers on the surfaces of dried pretreated films. The effects of pretreatment and polymerization time length, monomer concentration, and ratio on peroxide formation and graft amount were studied. The films were characterized by attenuated total reflection Furrier transformer infrared (ATR‐FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), zeta potential, surface tension, and water contact angle measurements. The ATR‐FTIR spectrum of the modified film after alkaline treatment showed the two new characteristic bands of PHEMA and PAAc. Both increase the polar part of surface tension (γp) after grafting and the evaluation of surface charge at pH 1.8, 7, and 12 confirmed the presence of polar groups on the surface of grafted films with a mixture of HEMA/AAc. Morphological studies using both AFM and SEM evaluation illustrated various amounts of grafted copolymer on the surface of PDMS films. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
In view of the complexity of surface photografting polymerization of vinyl acetate/maleic anhydride (VAC/MAH) binary monomer systems, a novel method was adopted in the present article to obtain insight into the relevant grafting copolymerization mechanism. This method includes two steps: semibenzopinacol dormant groups were first introduced onto LDPE film by UV‐irradiation and then thermally reactivated to produce LDPE macromolecular free radicals, which initiated the grafting copolymerization of VAC and MAH. It was demonstrated that, in the first step, the solvent used to introduce benzophenone (BP) to LDPE film largely affected the subsequent grafting copolymerization, which was closely related to the affinity of the solvent toward the substrate. The monomer feed composition had considerable influence on both the grafting and nongrafting copolymerization; however, the maximum copolymerization rates did not appear in the polymerization system with [VAC]/[MAH] being 1 : 1, but, in the system with a bit more VAC than MAH, as the total monomer concentration was raised, the maximum copolymerization rates tended to appear in the system with [VAC] equal to [MAH]. The relationship between the total copolymerization rate (RP) and monomer concentration was determined to be LnRP ∝ [VAC + MAH]1.83. All of these results indicated that both charge transfer (CT) complex formed by VAC and MAH and free monomers took part in grafting copolymerization. This feature differentiated the surface grafting copolymerization of VAC/MAH from the well‐studied thermally induced alternating copolymerization of VAC/MAH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

6.
Ozone‐induced grafting was developed to improve the hemocompatibility of biomaterials based on low‐density polyethylene (LDPE). An LDPE film was activated with ozone and graft‐polymerized with N,N′‐dimethyl(methacryloylethyl)ammonium propane sulfonate (DMAPS). The existence of sulfobetaine structures on the grafted film was confirmed by X‐ray photoelectron spectroscopy and attenuated total reflection/Fourier transform infrared (ATR–FTIR). More DMAPS was grafted onto the LDPE film as the DMAPS concentration increased, as determined by ATR–FTIR. Static contact‐angle measurements indicated that the DMAPS‐grafted LDPE film had a significant increase in hydrophilicity. The blood compatibility of the grafted film was preliminarily evaluated with a platelet‐rich‐plasma (PRP) adhesion study. No platelet adhesion was observed on the grafted film incubated with PRP at 37°C for 180 min. This new sulfoammonium zwitterionic‐structure‐grafted biomaterial might have potential for biomedical applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3697–3703, 2006  相似文献   

7.
A polydimethylsiloxane (PDMS) macroazoinitiator was synthesized from bis(hydroxyalkyl)‐terminated PDMS and 4,4′‐azobis‐4‐cyanopentanoic acid by a condensation reaction. The bifunctional macroinitiator was used for the block copolymerization of ethyl methacrylate (EMA) and 2‐(trimethylsilyloxy)ethyl methacrylate (TMSHEMA) monomers. The poly(DMS‐block‐EMA) and poly(DMS‐block‐TMSHEMA) copolymers thus obtained were characterized using Fourier transform infrared and 1H NMR spectroscopy and differential scanning calorimetry. After the deprotection of trimethylsilyl groups, poly(DMS‐block‐HEMA) and poly(DMS‐block‐EMA) copolymer film surfaces were analysed using scanning electron microscopy and X‐ray photoelectron spectroscopy. The effects of the PDMS concentration in the copolymers on both air and glass sides of films were examined. The PDMS segments oriented and moved to the glass side in poly(DMS‐block‐EMA) copolymer film while orientation to the air side became evident with increasing DMS content in poly(DMS‐block‐HEMA) copolymer film. The block copolymerization technique described here is a versatile and economic method and is also applicable to a wide range of monomers. The copolymers obtained have phase‐separated morphologies and the effects of DMS segments on copolymer film surfaces are different at the glass and air sides. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Chitosan was graft copolymerized with HEMA (2‐Hydroxyethylmethacrylate) for the development of blood‐compatible dialysis membranes. The permeation characteristics of HEMA‐grafted chitosan films for four different solutes creatinine, urea, glucose, and albumin was studied in vitro at 37°C for assessment of the suitability as dialysis membranes. The grafted film CH‐12.5 composition (425% grafting) showed very high permeation to creatinine by reaching the equilibrium within 45 min. The compositions CH‐7.5 and CH‐12.5 showed excellent permeation to glucose when compared to virgin chitosan films. In the case of urea permeation, all the grafted compositions exhibited higher percent permeation than the virgin chitosan films. The copolymer films CH‐7.5 and CH‐12.5 showed enhanced permeability for the high molecular weight solute, albumin. The other grafted copolymer compositions followed almost the same trend as that of chitosan for the low molecular weight solutes as well as the high molecular weight solute. The copolymer films were also found to be highly blood compatible, noncytotoxic, and biodegradable. Hence, the need for developing blood‐compatible chitosan membranes with desirable permeability properties is achieved by the graft copolymerization of HEMA onto chitosan. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2960–2966, 2006  相似文献   

9.
Dimethyl 2‐methacryloxyethylphosphonate, its monosodium salt, and methyl 2‐methacryloyloxyethylphosphonic acid were synthesized, characterized, and grafted onto low‐density polyethylene (LDPE) powder under melt‐processing conditions in a Rheocord batch mixer (Karlsruhe, Germany). We studied the graft copolymerization onto LDPE in the presence of free‐radical initiators, benzoyl peroxide, and dicumyl peroxide, and we performed grafting onto ozone‐pretreated LDPE without any free‐radical initiator. Effects of reaction time, initiator concentration, and reaction temperature were studied. The possibility of modifying LDPE in the molten state with phosphonated methacrylates was clearly demonstrated. Graft copolymers were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and water contact angles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2011–2020, 2002  相似文献   

10.
The surfaces of the film samples of low‐density polyethylene (LDPE) were chemically modified with an aqueous solution of ammonium persulphate solution (0.1 M) and Fe (NO3)3,9H2O (0.2 M) heated to about 80°C for 2.5 h for which polar groups like ? OH, 〉CO, ? COOH, etc., were generated on the surface of the LDPE films. The modified films were analyzed by Infrared (IR) spectroscopy, Scanning Electron Microscopy (SEM), and Electron Spectroscopy for Chemical Analysis (ESCA). New surface of LDPE produced by this modification, demonstrated reasonable oxygen incorporation on the surface of polymer films through chemical bonding, which is essential for adhesion processes. For these chemical changes the extent of printability and adhesion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3046–3051, 2004  相似文献   

11.
A starch‐based biodegradable (BD) low density polyethylene (LDPE) film can be directly printable without any corona treatment, unlike virgin LDPE film. Such a film shows poor adhesion and nail scratch resistance of the ink on the printed area of the film. In order to increase the adhesion and nail scratch resistance of the ink on the printed BD film, grafting of acrylonitrile onto the BD film is carried out. The polyacrylonitrile grafted BD film shows better adhesion, nail scratch resistance, and printability. The printability of the polyacrylonitrile grafted BD film is comparable to the conventional corona treated LDPE film. The extent of printability is a function of the surface smoothness, as well as the optimum percentage of grafting on the biodegradable film. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1273–1277, 2001  相似文献   

12.
Summary: Graft copolymerization of EA onto water‐soluble HPMC was carried out using γ‐radiation using both simultaneous and preirradiation in an aqueous medium. The effects of radiation environment, radiation dose, monomer concentration, and reaction temperature on percentage of grafting (G) and grafting efficiency (GE) were investigated. For preirradiation, the observed values for G and GE were higher in air than in a nitrogen atmosphere. G and GE values are obviously higher for preirradiation; their maximum values were obtained for a radiation dose of 1.8 kGy. The grafting parameters increase for increasing monomer concentration up to 0.15 mol · L?1, where they reach their saturation values. In the case of preirradiation, the largest grafting parameters are obtained at 65 °C. The graft copolymers obtained were characterized by FTIR spectroscopy, TEM, SEM, and XRD methods. The method of irradiation significantly affects the mechanical properties of the grafted HPMC samples. Samples prepared by simultaneous irradiation show superior mechanical properties. In addition, the equilibrium humidity adsorption behaviors of the grafted copolymers were also studied, and the humidity resistance behavior of HPMC was enhanced through the grafting copolymerization.

Transmission electron micrograph of the HPMC‐g‐PEA water dispersion.  相似文献   


13.
Summary: VP and co‐monomers DMAAm and ST were successfully grafted onto a PP fabric in an emulsion copolymerization process initiated by γ‐radiation. The radiation dose, concentration of VP, the ratio of VP/DMAAm and VP/ST in the reaction solution, and the reaction temperature dependent graft copolymerization were investigated. The order of dependence of the initial rate of grafting on the radiation dose was found to be in the range of 1.2 to 0.93 for VP; 0.84 to 0.70 for VP/DMAAm and for VP/ST was in the range of 0.59 to 0.41. The activation energy of the graft copolymer reaction was determined to be 40.18 J · mol?1 for 0.464 mol · L?1 VP. In the case of co‐monomer mixtures (VP/DMAAm: 0.464/0.5) the energy of activation was noticeably higher at 49.71 J · mol?1 while for VP/ST (0.464/0.436) the activation energy was same as that of VP. XRD results showed that overall crystallinity significantly decreased with the increase of graft weight with a noticeable change in the chemical structure of the PP, indicating that the graft copolymer reaction was taking place both in the amorphous and crystalline regions of PP. A similar characteristic behavior was also obtained by DSC, which revealed the presence of an endotherm process in the range of 25 to 130 °C depending on the degree of grafting, attributed to the grafted chains of the monomer/co‐monomers. In order to determine the graft copolymer reaction of VP, DMAAm and ST onto the backbone of PP, the reaction products were characterized by FTIR spectroscopy. A good correlation was found between changes of crystallinity and level of graft copolymerization as determined by WAXRD and DSC.

Typical XRD traces of as‐received PP fabric (PPF) and grafted with VP (PPF‐g‐VP).  相似文献   


14.
The UV‐curable urethane‐acrylates based on 2‐hydroxyethyl methacrylate (HEMA)‐terminated polyurethane (PU) for lithographic and coating applications are investigated in this study. Series of PU prepolymers were made from 4,4‐diphenyl methane diisocyanate (MDI), poly(propylene oxide) glycol (PPG 400), poly(butylene adipate)glycol (PBA 500), or poly(tetramethylene oxide) glycol (PTMO 1000) and are terminated with HEMA. The 2,2‐azobisisobutyronitrile (AIBN) was used as a UV‐initiator under air atmosphere. The curing kinetics of HEMA‐terminated PU film were studied. The curing analysis, using FTIR and reaction kinetics, indicate the reaction rate equation correlates well with the film thickness [T], initiator concentration [I], unreacted double bond concentration [C?C], and exposed energy [E] of the reaction system. The kinetic rate equation for the UV‐curable reaction can be written as © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3162–3166, 2004  相似文献   

15.
A novel borate ester (BE)‐grafted carboxylated acrylonitrile butadiene rubber (XNBR) was synthesized. From Fourier transform infrared, 1H NMR and elemental analyses, the borate ester was successfully grafted to XNBR, resulting in a more flexible XNBR chain as revealed by differential scanning calorimetry. The binding energies of boron, oxygen, lithium and chlorine atoms of XNBR‐g‐BE–LiClO4 are quite different from those of XNBR or LiClO4. Meanwhile, the wavenumbers of C? O? B? O? C, C?O and C? H vibrations of the benzene ring shift towards lower values and a new shoulder peak for ? CN at about 2260 cm?1 emerges. By integrating fitting peak areas of ? CN groups and ClO4?, the fractions of ? CN group and ClO4? bidentate bonding in XNBR‐g‐BE–LiClO4 are much higher than in NBR–LiClO4. Based on these experiments, a possible dissociation mechanism is proposed in which the boron atom of XNBR‐g‐BE receives electron pairs from ClO4?, releasing partial positive charge of Li+ to bind with ? CN group. © 2016 Society of Chemical Industry  相似文献   

16.
Surface modification of argon plasma–pretreated low‐density polyethylene (LDPE) film via UV‐induced graft copolymerization with a fluorescent monomer, (pyrenyl)methyl methacrylate (Py)MMA, was carried out. The chemical composition and morphology of the (Py)MMA‐graft‐copolymerized LDPE [(Py)MMA‐g‐LDPE] surfaces were characterized, respectively, by X‐ray photoelectron spectroscopy (XPS) and by atomic force microscopy (AFM). The concentration of the surface‐grafted (Py)MMA polymer increased with Ar plasma pretreatment time and UV graft copolymerization time. The photophysical properties of the (Py)MMA‐g‐LDPE surfaces were measured by fluorescence spectroscopy. After graft copolymerization with the fluorescent monomer, the surface of the LDPE film was found to have incorporated new and unique functionalities. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1526–1534, 2001  相似文献   

17.
pH‐responsive polyethylene terephthalate (PET) track‐etched membranes were synthesized by grafting 2‐hydroxyethyl‐methacrylate (HEMA) on the surface of the membrane via atom transfer radical polymerization. The controllability of grafting polymerization of HEMA on membrane surface is systematically investigated. The pH‐responsive characteristics of PET‐g‐poly(2‐hydroxyethyl‐methacrylate) (PHEMA) gating membranes with different grafted PHEMA chain lengths are measured by tracking the permeation of water solution with different pH values. The results show that the grafting polymerization is controllable, and the permeation of grafted membranes is affected by the grafted PHEMA chain lengths on the surface of membrane. The results also demonstrate that the grafted PET membranes exhibit reversible pH‐response permeation to environmental pH values. Desired pH‐responsive membranes are obtained by controlling the grafted PHEMA chain lengths via atom transfer radical polymerization method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40912.  相似文献   

18.
This article describes the graft copolymerization of poly(methyl methacrylate) (PMMA) onto oil‐palm empty fruit bunches (OPEFBs) with a fiber length of less than 75 μm. The graft copolymerization was carried out under a nitrogen atmosphere by a free‐radical initiation technique in an aqueous medium. Hydrogen peroxide and ferrous ions were used as a redox initiator/cocatalyst system. The PMMA homopolymer that formed during the reaction was removed from the grafted copolymers by Soxhlet extraction. Determining the effects of the reaction period, reaction temperature, and monomer concentration on the grafting percentage was the main objective, and they were investigated systematically. The optimum reaction period, reaction temperature, monomer concentration, and initiator concentration were 60 min, 50°C, 47.15 × 10?3 mol, and 3.92 × 10?3 mol, respectively. The maximum percentage of grafting achieved under these optimum conditions was 173%. The presence of PMMA functional groups on OPEFB and the enormous reduction of the hydroxyl‐group absorption band in PMMA‐g‐OPEFB spectra provided evidence of the successful grafting reaction. The improvement of the thermal stability of PMMA‐g‐OPEFB also showed the optimal achievement of the grafting reaction of PMMA onto OPEFB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Structural investigations of PTFE‐g‐polystyrene sulfonic acid membranes prepared by radiation grafting of styrene onto PTFE were conducted by X‐ray photoelectron spectroscopy (XPS). The analyzed materials included original PTFE film as a reference material, grafted film, and sulfonated membrane samples having various degrees of grafting. Interest is focused on C1s, F1s, O1s, and S2p of narrow XPS spectra as the basic elemental components of the membrane. The original PTFE film was found to undergo structural changes in terms of chemical composition and shifting in binding energy induced by incorporation of sulfonated polystyrene grafts, and the amount of such changes depends on the degree of grafting. The atomic ratio of F/C was found to decrease with the increase in the degree of grafting, while that for S/C and O/C were found to increase. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 336–349, 2000  相似文献   

20.
New hybrid poly(hydroxyethyl methacrylate‐co‐methyl methacrylate)‐g‐polyhedral oligosilsesquioxane [poly(HEMA‐co‐MMA)‐g‐POSS] nanocomposites were synthesized by the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry using a grafting to protocol. Initially, the random copolymer poly(HEMA‐co‐MMA) was prepared by RAFT polymerization of HEMA and MMA. Alkynyl side groups were introduced onto the polymeric backbones by esterification reaction between 4‐pentynoic acid and the hydroxyl groups on poly(HEMA‐co‐MMA). Azide‐substituted POSS (POSS? N3) was prepared by the reaction of chloropropyl‐heptaisobutyl‐substituted POSS with NaN3. The click reaction of poly(HEMA‐co‐MMA)‐alkyne and POSS? N3 using CuBr/PMDEATA as a catalyst afforded poly(HEMA‐co‐MMA)‐g‐POSS. The structure of the organic/inorganic hybrid material was investigated by Fourier transformed infrared, 1H‐NMR, and 29Si‐NMR. The elemental mapping analysis of the hybrid using X‐ray photoelectron spectroscopy and EDX also suggest the formation of poly(HEMA‐co‐MMA)‐anchored POSS nanocomposites. The XRD spectrum of the nanocomposites gives evidence that the incorporation of POSS moiety leads to a hybrid physical structure. The morphological feature of the hybrid nanocomposites as captured by field emission scanning electron microscopy and transmission electron microscopic analyses indicate that a thick layer of polymer brushes was immobilized on the POSS cubic nanostructures. The gel permeation chromatography analysis of poly(HEMA‐co‐MMA) and poly(HEMA‐co‐MMA)‐g‐POSS further suggests the preparation of nanocomposites by the combination of RAFT and click chemistry. The thermogravimetric analysis revealed that the thermal property of the poly(HEMA‐co‐MMA) copolymer was significantly improved by the inclusion of POSS in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号