首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blend fabrics of cotton and polyester are widely used in apparel, but high flammability becomes a major obstacle for applications of those fabrics in fire protective clothing. The objective of this research was to investigate the flame retardant finishing of a 50/50 polyester/cotton blend fabric. It was discovered previously that N,N′‐dimethyloldihydroxyethyleneurea (DMDHEU) was able to bond a hydroxy‐functional organophosphorus oligomer (HFPO) onto 50/50 nylon/cotton blend fabrics. In this research, the HFPO/DMDHEU system was applied to a 50/50 polyester/cotton twill fabric. The polyester/cotton fabric treated with 36% HFPO and 10% DMDHEU achieved char length of 165 mm after 20 laundering cycles. The laundering durability of the treated fabric was attributed to the formation of polymeric cross‐linked networks. The HFPO/DMDHEU system significantly reduced peak heat release rate (PHRR) of cotton on the treated polyester/cotton blend fabric, but its effects on polyester were marginal. HFPO/DMDHEU reduced PHRR of both nylon and cotton on the treated nylon/cotton fabric. It was also discovered that the nitrogen of DMDHEU was synergistic to enhance the flame retardant performance of HFPO on the polyester/cotton fabric.  相似文献   

2.
涤纶织物浸轧用阻燃剂环状磷酸酯的合成   总被引:1,自引:0,他引:1  
以亚磷酸三乙酯、三羟甲基丙烷和甲基磷酸二甲酯为原料合成了环状磷酸酯,可作为涤纶织物浸轧用的环保型耐久阻燃剂。利用正交实验讨论了反应过程中各因素对结果的影响。结果表明:亚磷酸三乙酯:三羟甲基丙烷:甲基磷酸二甲酯的摩尔比为1.05:1:1.2,自制复合有机酸为酯交换反应催化剂,质量分数为0.1%,反应温度85℃,反应时间3 h,自制复合有机碱为加成反应的催化剂,质量分数为1.0%,反应温度200℃,反应时间8 h,酯交换反应收率95.0%,加成反应收率90.0%。合成的阻燃剂具有良好的阻燃性能和耐洗性能,用量超过100 g/L时,处理的织物经50次水洗可达GB/T5455—1997 B1级。  相似文献   

3.
The surface and adhesion properties of different molecular weight poly(ethylene glycol) (PEG) (400, 1500, and 3000 g/mol) on untreated and air‐atmospheric plasma‐treated PET woven fabrics were studied, with the aim of developing durable hydrophilic PET fibrous structures. PEG application was carried out by padding of the PET fabric in aqueous solution of PEG followed by curing and drying. The surface properties of the PEG‐coated PET fabrics were then characterized using wicking test to measure the water contact angle (θ°) and capillary weight (Wc), and using atomic force microscopy (AFM) images in the tapping mode. Results showed that without a prior air‐atmospheric plasma treatment of the PET fabric, the water contact angle decreased and capillary weight increased with the three PEGs, implying an increase in the hydrophilicity of both inner and outer PET fabric fiber surface. Air‐plasma treatment of the PET fabrics before PEG coating increases further the hydrophilicity of the inner fabric fiber surface: the capillary weight was almost doubled in the case of the three PEGs. Best results were obtained with PEG 1500: water contact angle decreasing from 82° to 51°, and the capillary weight increasing from 11 mg to 134 mg. Moreover, wash fastness test at room temperature and at 80°C confirms improved adhesion of PEG‐1500 to the plasma‐treated PET woven fabric surface, while under the same conditions the plasma‐treated PET without PEG loses completely its hydrophilic character. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

4.
The crystal structure of p‐hydroxybenzoate/2‐hydroxy‐6‐naphthoic acid copolyester [P(HBA/HNA)]/poly(ethylene terephthalate) (PET) blend (ACPET) fiber was studied with wide‐angle X‐ray diffraction and differential scanning calorimetry. The results showed that crystallites of P(HBA/HNA) and PET were formed in ACPET fibers; that is, some crystallites of ACPET fiber were composed of PET chains, and others were composed of P(HBA/HNA) chains. The thermal behaviors of the crystals of each component in the blend fiber were different from those of each corresponding pure component. For the fibers heat‐treated at 300 and 350°C, the degree of supercooling of P(HBA/HNA) segments in the blend fibers was the same as that of P(HBA/HNA) fiber, but the degree of supercooling of PET in the blend fibers was distinctly higher than that of pure PET fibers. Evidently, the aforementioned changes were attributable to the blending of PET with P(HBA/HNA). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 394–400, 2002  相似文献   

5.
将聚对苯二甲酸乙二酯(PET)与聚对苯二甲酸丙二醇酯(PTT)共混纺丝制备PET/PTT共混纤维,研究了共混纤维的结构与性能。结果表明,随着PTT含量的增加,PET/PTT共混纤维的晶粒尺寸逐渐增大;PET/PTT共混纤维的断裂强度较PTT纤维大,回弹性较PET纤维好,沸水收缩率较PET纤维大;当PTT质量分数为50%时,共混纤维的结晶度出现最小值,沸水收缩率出现最大值。  相似文献   

6.
Chemically modified cotton fabric samples having different amounts of aromatic amino groups were prepared. These modified samples were reacted with tetrakis(hydroxymethyl)phosphonium chloride (THPC) under a variety of conditions using the pad-dry–thermofixation technique. The extent of the reaction (expressed as %P) was dependent of the degree of chemical modification of cotton, temperature and time of heating, and pH of the treating bath as well as incorporation of Lyofix CHN (N-methylol finishing agent), MgCl2·6H2O (catalyst), and urea at various concentrations. THPC did react with the modified cotton having a nitrogen content over a range of 0.4%–1.3% even in the absence of catalyst at a temperature as low as 30°C for 10 min to impart durable flame resistance to cotton. Increasing the temperature up to 80°C enhanced considerably the extent of reaction; he latter remained practically constant upon further increase in temperature. The reaction was favored in acidic media (pH 4–6), whereas alkaline media (pH 9–11) inhibited it. Incorporation of Lyofix CHN (9%), MgCl26H2O (1%), and urea (5%) along with THPC (25%) in the treating bath required a curing temperature of 120°C and a curing time of 5 min to achieve a fabric containing as much as 2.7% phosphorus with excellent durable flame resistance. A tentative mechanism of the reaction between THPC and the modified cotton was also elicited.  相似文献   

7.
Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer‐by‐layer (LbL) assembly to reduce the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane materials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)‐methyl siloxane‐55‐65% dimethyl siloxane copolymer chloride salt (QMS‐435), aminoethylaminopropyl silsesquioxane‐methylsilsesquioxane copolymer oligomer (WSA‐7021) and aminopropyl silesquioxane oligomers (WSA‐991), as a positive polyelectrolyte. Thermo‐gravimetric analysis showed that coated fabric has char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test (VFT) on the LbL‐coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm. Volatile and nontoxic degradation products of flame retardant‐coated fabric were analyzed by pyrolysis gas chromatography mass spectroscopy (Py‐GCMS). Surface morphology of coated fabrics and burned fabric residues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The toughening of polyethylene terephthalate (PET)/amorphous copolyester (PETG) blends using a maleic anhydride grafted mixture (TPEg) of polyethylene‐octene elastomer and a semicrystalline polyolefin plastic (60/40 by weight) was examined. The TPEg was more effective in toughening PETG than PET, although the dispersion qualities of the TPEg particles in PET and PETG matrices were very similar. At the fixed TPEg content of 15 wt %, replacing partial PET by PETG resulted in a sharp brittle‐ductile transition when the PETG content exceeded the PET content. Before the transition, PET/PETG blends were not toughened with the TPEg of 15 wt %, whereas after the transition, the PET/PETG blends with 15 wt % of TPEg, similar to the PETG/TPEg (85/15) binary blend, maintained a super‐tough level. The impact‐fractured surfaces of the PET/PETG/TPEg blends were also evaluated. When PETG content was lower than PET content, the ternary blend showed a brittle feature in its impact‐fractured surface, similar to the PET/TPEg (85/15) binary blend. While PETG content exceeded PET content, however, the impact‐fractured surface of the ternary blend was very similar to that of PETG/TPEg (85/15) binary blend, exhibiting intensive cavitation and massive matrix shear yielding, which were believed to be responsible for the super‐tough level of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 797–805, 2003  相似文献   

9.
Immiscible blends of recycled poly(ethylene terephthalate) (R‐PET), containing some amount of polymeric impurities, and high‐density polyethylene (R‐PE), containing admixture of other polyolefins, in weight compositions of 75 : 25 and 25 : 75 were compatibilized with selected compatibilizers: maleated styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MA) and ethylene–glycidyl methacrylate copolymer (EGMA). The efficiency of compatibilization was investigated as a function of the compatibilizer content. The rheological properties, phase structure, thermal, and viscoelastic behavior for compatibilized and binary blends were studied. The results are discussed in terms of phase morphology and interfacial adhesion among components. It was shown that the addition of the compatibilizer to R‐PET‐rich blends and R‐PE‐rich blends increases the melt viscosity of these systems above the level characteristic for the respective binary blends. The dispersion of the minor phase improved with increasing compatibilizer content, and the largest effects were observed for blends compatibilized with EGMA. Calorimetric studies indicated that the presence of a compatibilizer had a slight affect on the crystallization behavior of the blends. The dynamic mechanical analysis provided evidence that the occurrence of interactions of the compatibilizer with blend components occurs through temperature shift and intensity change of a β‐relaxation process of the PET component. An analysis of the loss spectra behavior suggests that the optimal concentration of the compatibilizers in the considered blends is close to 5 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1423–1436, 2001  相似文献   

10.
Cationic dyeable poly(ethylene terephthalate) (CD‐PET) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in the proportions of 75/25, 50/50, 25/75) from two melt twin‐screw extruders to prepare CD‐PET/m‐iPP (and m‐iPP/CD‐PET)‐conjugated fibers of the island‐in‐sea type. This study investigated the thermal behavior and mechanical and morphological characteristics of the conjugated fibers using DSC, TGA, WAXD, melting viscosity rheometer, density indicator, tenacity measurement, and a polarizing microscope. Melting behavior of CD‐PET/m‐iPP polyblended polymers exhibited negative‐deviation blends (NDB) and the 50/50 blend showed a minimum value of the melt viscosity. Experimental results of the DSC indicated CD‐PET and m‐iPP molecules formed a partial miscible system. The tenacity of CD‐PET/m‐iPP‐conjugated fibers decreased initially and then increased as the m‐iPP content increased. Crystallinities and densities of CD‐PET/m‐iPP‐conjugated fibers presented a linear relation with the blend ratio. On the morphological observation, it was revealed that the blends were in a dispersed phase structure. In this study, the CD‐PET microfibers were successfully produced with enhanced diameters (from 2.2 to 2.5 μm). Additionally, m‐iPP colored fibers (m‐iPP fibers covered with CD‐PET polymer) were also successfully prepared. Meanwhile, the presence of PP‐graft‐MA compatibilizer improved the tenacity considerably. Blends with 10 wt % compatibilizer exhibited maximum improvement in the tenacity for m‐iPP colored fibers. The dye exhaustions of various fabrics followed the order: m‐iPP colored fibers > conventional CD‐PET fibers > CD‐PET microfibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5396–5405, 2006  相似文献   

11.
The feasibility of adherent silver layers onto PET fabrics by electroless plating was explored and its optimal technology for modification and electroless plating was investigated. Morphology, structure, and thermal stability of silver plating PET fabrics were characterized by scanning electric microscope (SEM), X‐ray diffraction (XRD) and thermogravitric (TG) analysis. As the silver weight on the modified fabric is 25 g/m2, the electromagnetic shielding effectiveness (SE) of silver plating PET fabric is more than 30dB at the frequency ranging from 1MHz to 5000 MHz. The results show that the silver plating PET fabric has good electrical conductivity and electromagnetic shielding property. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
PET/EHDPET异形共混纤维非织造布的吸排水性能   总被引:2,自引:0,他引:2  
研究了不同碱减量率的聚酯/水溶性聚酯(PET/EHDPET)异形共混纤维非织造布的吸排水性能,探讨了碱减量率和温度等因素对非织造布吸排水速率的影响。结果表明,PET/EHDPET异形共混纤维非织造布随着碱减量率的增大吸排水性能提高;随着温度的升高,排水速率增大。  相似文献   

13.
纺织物表面的超疏水特性将赋予其优异的自清洁性能。以PET无纺布为基材,探索了利用溶胶-凝胶法在预处理后的PET织物表面构筑具有微纳结构的超疏水涂层的方法;并利用扫描电镜(SEM)、接触角测量仪表征了改性PET织物表面的微观结构和润湿性。进一步地,分别以大肠杆菌和金黄色葡萄球菌为试验菌株,通过细菌转移法和抑菌圈法评价与分析了改性PET织物表面的抗菌性能。研究表明:利用改进的Stöber溶胶-凝胶过程能够在经碱减量法预处理的PET表面原位形成SiO2纳米粒子;再用含疏水性长链的十二烷基硅烷对这一表面进行改性,并经过表面热处理,就能够成功地在PET织物表面构筑多层次的微/纳结构,从而制得表面具有超疏水特性的PET织物,其接触角可达到163°。这一超疏水PET织物能够抑制细菌在其表面的生长繁殖,表现出了明显的抗菌特性。  相似文献   

14.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

15.
The study focused on the development of biofunctional polyester/cotton blend fabric using a natural product. An antimicrobial agent extracted from the seeds of Neem tree (Azadirachta indica) was used for imparting antibacterial property to the blend fabric. Resin and catalyst concentrations were optimized to get the maximum crosslinking in the fabric blends using glyoxal/glycol as a crosslinking agent. The optimized concentrations were used to treat the fabric with the antimicrobial agent along with the crosslinking agent. Quantitative analysis was carried out to measure the antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The results showed that the treated fabrics inhibited the growth of Gram‐positive bacteria (Bacillus subtilis) by more than 90% as compared to the control sample. Antimicrobial activity against Gram‐ positive bacteria was retained up to five machine washes and decreased thereafter. The antibacterial activity was higher against Gram‐positive bacteria as compared to Gram‐ negative bacteria (Proteus vulgaris). The treated fabrics also showed improved crease recovery property although the tensile property showed a marginal decrease. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
After a series of investigations on the durable flame‐retardant finishes, it was thought to be important to study these durable flame‐retardant finished materials from the thermal analytical standpoint. Accordingly, cotton fabric was finished with N‐methylol dialkyl phosphonopropionamide (Pyrovatex C) by thermofixation and tetrakis (hydroxymethyl) phosphonium sulfate (THPS) precondensate by ammonia cure (Proban), as well as with THPS monomer by heat cure under various conditions, and subjected to the thermogravimetry (TG) to observe thermal degradation behaviors and obtain apparent activation energy (Ea). TG curves of Proban‐finished samples showed the largest shift to lower temperatures with a steep slope; thermofixed THPS‐finished sample gave a smaller shift with similar steep slope, whereas Pyrovatex‐finished samples exhibited a similar shift but with a gradual slope. Ea versus residual ratio curves led us to conclude that C N bond‐rich Proban polymer requires the highest Ea and decomposes with considerable rapidity, whereas ethylene‐bond‐rich Pyrovatex‐finished samples with melamine crosslinking decompose gradually with the lowest Ea. As for the relationship between flame retardance and Ea distribution in the process of thermal degradation, typical differences among the above three kinds of finished samples were found, which are compared and discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 975–987, 1999  相似文献   

17.
Unbleached (gray) cotton needle‐punched nonwoven (NW) fabrics with 12.5% polypropylene scrim were treated with two phosphate–nitrogen‐based flame retardant (FR) formulations, Southern Regional Research Center (SRRC)‐1 and SRRC‐2. The SRRC‐1 formulation contains diammonium phosphate as the FR chemical along with urea and dimethyloldihydroxyethyleneurea. Because a trace amount of formaldehyde was still expected to be released from SRRC‐1‐treated FR cotton under high heat, it was preferable to eliminate the dimethyloldihydroxyethyleneurea, leading to the revised formulation SRRC‐2. It has a higher content of diammonium phosphate and did not use the polyethylene emulsion that was in SRRC‐1. Both formulations were of low cost as they were developed at SRRC using industrial grade chemicals. The fabrics were evaluated with a cone calorimeter using three heat flux levels, 20, 30, and 50 kW/m2. On the basis of the overall cone calorimeter results for heat released and ignition times, FR NW fabrics that were treated with SRRC‐2 were found to be slightly superior in flammability properties to those treated with the earlier SRRC‐1 formulation, but the differences were statistically insignificant. Both preparations were much less flammable than the untreated control cotton NW fabrics. Compared with the untreated NW fabrics, the FR fabrics had higher visible smoke production. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A novel halogen‐free and formaldehyde‐free flame retardant (FR), which contains phosphorus, nitrogen, and silicon, was synthesized for cotton fabrics considering the synergistic effect of phosphorus, nitrogen, and silicon. The structure of the new FR was characterized by Fourier‐trans‐form infrared spectroscopy, and the surface morphology of the treated fibre was observed using scanning electron microscope. The thermal property of the FR treated cotton fabric was studied through thermal gravimetric analysis. The TG results indicate that the FR can protect cotton fabric from fire to a certain degree. The vertical flammability test and limiting oxygen index results further indicate that the FR has excellent FR properties. Finally, the durability and other performance properties of the treated fabric were studied and the results show that the new materials can be used as a semi‐durable FR for cellulosic fibres. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(styrene‐ethylene/butylene‐styrene) (SEBS) was used as a compatibilizer to improve the thermal and mechanical properties of recycled poly(ethylene terephthalate)/linear low‐density polyethylene (R‐PET/LLDPE) blends. The blends compatibilized with 0–20 wt % SEBS were prepared by low‐temperature solid‐state extrusion. The effect of SEBS content was investigated using scanning electron microscope, differential scanning calorimeter, dynamic mechanical analysis (DMA), and mechanical property testing. Morphology observation showed that the addition of 10 wt % SEBS led to the deformation of dispersed phase from spherical to fibrous structure, and microfibrils were formed at the interface between two phases in the compatibilized blends. Both differential scanning calorimeter and DMA results revealed that the blend with 20 wt % SEBS showed better compatibility between PET and LLDPE than other blends studied. The addition of 20 wt % of SEBS obviously improved the crystallizibility of PET as well as the modulus of the blends. DMA analysis also showed that the interaction between SEBS and two other components enhanced at high temperature above 130°C. The impact strength of the blend with 20 wt % SEBS increased of 93.2% with respect to the blend without SEBS, accompanied by only a 28.7% tensile strength decrease. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
In attempts to improve the compatibility of polypropylene (PP) with polyethylene terephthalate (PET), a maleic anhydride grafted PP (PP‐g‐MA) was evaluated as a compatibilizer in a blend of 30/70 wt % PP/PET. PP‐g‐MA was produced from isotactic homopolymer PP utilizing the technique of solid phase graft copolymerization. Qualitative confirmations of the grafting were made by Fourier transform infrared spectroscopy (FTIR). Three different weight percent of compatibilizer, PP‐g‐MA, i.e., 5, 10, and 15 wt % have been used in PP/PET blends. The compatibilizing efficiency for PP/PET blend was examined using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM) of crycrofractured surfaces, and energy dispersive X‐ray spectrum (EDAX). The results show that the grafted PP promotes a fine dispersed phase morphology, improves processability, and modifies the crystallization behavior of the polyester component. These effects are attributed to enhance phase interaction resulting in reduced interfacial tension. Also, the results show that the compatibilizing effects of the three amounts of grafted PP in blend are different and dependent on the amount used. Adding 10 wt % of compatibilizer into blend produced the finest dispersed morphology. Elemental analysis results show that PP is matrix. DSC determination revealed that the melting temperature (Tm) of the PET component declined to some extent by comparison with neat PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3986–3993, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号