首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

2.
3.
Relationship between phase morphology and optical properties of polystyrene and polyarylate (PS‐PAr) block copolymers synthesized from telechelic polystyrene has been investigated. In the PS‐PAr block copolymers, the PAr domains with higher melt viscosity were dispersed in the PS phase matrix with lower melt viscosity over the wide range of their composition from PS/PAr = 25/75 to 75/25 (wt ratio). The PAr domain size was dependent on the reactive ratio of PAr determined analogously by the mole fraction of the fed telechelic polystyrene. By controlling the mole fraction of the telechelic polystyrene more than 0.016 in synthesizing the PS‐PAr block copolymer, the size of PAr domains could be reduced to the microscopic scale (smaller than 100 nm). Then, the PS‐PAr block copolymers exhibited almost the same transparency as PAr in spite of the large difference in the refractive index between the PS and the PAr phase. Birefringence free condition for the PS‐PAr block copolymers was determined by not only the PS/PAr composition but also the balance in the degree of molecular orientation of these chains. The latter factor suggests that PS and PAr chains undergo inhomogeneous stress and relaxation history during the injection process. By controlling Mn (number average molecular weight) and weight fraction of the fed OH‐PS‐OH around 20 000 and 55 wt %, respectively, in the synthesis of the PS‐PAr block copolymer, the PS‐PAr block copolymer exhibited almost zero birefringence without any sacrifice of transparency. Because in the PS‐PAr block copolymer low birefringence and high transparency can coexist by controlling the adequate feeding condition in the synthesis process, the PS‐PAr block copolymer would be a promising material for optical applications, such as a substrate of optical disks or optical lenses. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 953–961, 2000  相似文献   

4.
The morphology and notched impact behaviour of polyamide-1010/polystyrene (PA1010/PS) (90/10) blends compatibilized by carboxylated polystyrene (CPS) have been studied. It is found that the addition of CPS has a beneficial effect upon the morphology of the resulting blends which leads to a finer dispersion of the PA1010 spherulites and of the PS particles in the PA1010 matrix. However, with increasing CPS content, the shape of the PS domains appears less regular, which may be due to the cracking of the PS spherical domains. Infrared analysis was performed to confirm the formation of PS–PA1010 graft copolymer during the blending process. The notched impact toughness of the compatibilized blends shows a maximum which is almost triple that of the binary blend at approximately 5 wt% of the CPS addition based on the amount of PS. © 1999 Society of Chemical Industry  相似文献   

5.
Effect of compatibilization of styrene–butadiene–styrene (SBS) block copolymer in polypropylene/polystyrene (PP/PS) blends was studied by means of small angle X‐ray scattering (SAXS) and scanning electron microscope (SEM). According to SAXS, a certain amount of SBS was located at the interface in all the analyzed samples, forming the relatively thicker interface layer penetrating into homopolymers, and the thickness of the interface layer was quantified in terms of Porod light scattering theory. The incorporation of SBS into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as an uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. This effect was more pronounced when the concentration of SBS was higher. A critical concentration of SBS of 15% above which the interface layer approaches to saturation and domain size attains a steady‐state was observed. Further, the morphology fluctuation of unetched fracture surface of umcompatibilized and compatibilized blends was analyzed using an integral constant Q based on Debye‐Bueche light scattering theories. Variation of Q as a function of the concentration of SBS showed that, due to the penetrating interface layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of fracture surface appeared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:365–370, 2007  相似文献   

6.
在熔融状态下利用Friedel - Crafts 烷基化反应原位增容聚苯乙烯( PS) /三元乙丙橡胶( EPDM) 共混物,研究了不同的催化体系对PS /EPDM 共混物性能及动态流变行为的影响。结果表明,加入助催化剂氯化钠的催化体系有利于强化PS 与EPDM 间的接枝反应,同时降低EPDM 的交联反应,提高了PS /EPDM 共混物的力学性能; 动态力学分析结果表明加入助催化剂后PS /EPDM 共混物的储能模量和PS 的玻璃化转变温度均降低; 动态流变行为显示,在低频率区域,加入了助催化剂的共混物其动态储能模量、损耗模量和复数黏度均高于加入普通催化体系者,损耗因子低于普通催化体系; 从扫描电镜照片可以看出,加入助催化剂共混物的两相结合紧密,脆断面的橡胶粒子剥离空洞减少,相容性提高。  相似文献   

7.
A reactive compatibilizer, mercapto‐functionalized EVA (EVASH), in combination with styrene‐butadiene block copolymer (SBS), was used to compatibilize the blends of polystyrene (PS) and ethylene–vinyl acetate copolymer (EVA). The reactive compatibilization was confirmed by the presence of insoluble material and from dynamic‐mechanical analysis. In addition to a more uniform morphology with small phase size, the compatibilization also provided excellent stabilization of the morphology, with an almost complete suppression of coarsening during annealing. As a consequence, a substantial increase on the elongation at break without significant influence on ultimate tensile strength was achieved for compatibilized blends with different compositions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 14–22, 2006  相似文献   

8.
The interfacial activity of a hydrogenated polybutadiene-polystyrene tapered diblock copolymer, (HPB-b-PS) is investigated in blends of a low density polyethylene (LDPE) with a high impact polystyrene (HIPS) prepared in the melt state on a two-roll mill. Optical and scanning electron microscopy examinations of smoothed or fracture surfaces and also surfaces obtained after THF-extraction of PS phases demonstrate that the copolymer promotes the dispersion and interfacial adhesion of the components, whatever the composition and is able to create and stabilize particular dispersions of the rubber particles in these blends. Tensile and Charpy impact properties are also very significantly improved. All these features demonstrate that the ductility and toughness of PS and LDPE/PS blends can be closely controlled by adequate combinations of rubber particles and a HPB-b-PS copolymer.  相似文献   

9.
Polystyrene (PS)/polyamide 1212 (PA 1212) blends were compatibilized with a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA). Scanning electron microscopy revealed that the addition of SEBS‐g‐MA was beneficial to the dispersion of PA 1212 in the PS matrix because of the reaction between them. The variation of the fraction of SEBS‐g‐MA in the blends allowed the manipulation of the phase structure, which first formed a sheetlike structure and then formed a cocontinuous phase containing PA 1212/SEBS‐g‐MA core–shell morphologies. As a result, the mechanical properties, especially the Charpy notched impact resistance, were significantly improved with the addition of SEBS‐g‐MA. Differential scanning calorimetry (DSC) data indicated that the strong interaction between SEBS‐g‐MA and PA 1212 in the blends retarded the crystallization of PA 1212. The heat distortion temperature of the compatibilized blends was improved in comparison with that of the unmodified blend, probably because of the apparent increase in the glass‐transition temperature with an increasing concentration of SEBS‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1354–1360, 2005  相似文献   

10.
γ‐Radiation vulcanized natural rubber (RVNR)/phase transfer/suspension polymerization technique was used to prepare high‐impact polystyrene (HIPS) in bead form. The high notched Izod impact resistance of HIPS based on RVNR was observed and compared with that of unmodified PS. The impact resistance of HIPS based on RVNR was further enhanced by addition of 10% of polystyrene‐block‐polyisoprene‐block‐polystyrene copolymer. A mesh structure of all crosslinked rubber particles containing polystyrene and long crazes in HIPS were observed under electron microscopy. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
The recycled polystyrene (rPS) was toughened with ethylene‐octylene copolymer thermoplastic elastomer (POE) and high‐density polyethylene (HDPE) with various melt flow index (MFI), compatibilized by styrene‐butadiene‐styrene copolymer (SBS) to enhance the toughness of rPS for use as TV backset. The rPS/POE binary blends exhibited an increased impact strength with 5–10 wt % POE content followed by a decrease with the POE content up to 20 wt %, which could be due to poor compatibility between POE and rPS. For rPS/POE/SBS ternary blends with 20 wt % of POE content, the impact strength increased dramatically and a sharp brittle‐ductile transition was observed as the SBS content was around 3–5 wt %. Rheological study indicated a possible formation of network structure by adding of SBS, which could be a new mechanism for rPS toughening. In rPS/POE/HDPE/SBS (70/20/5/5) quaternary blends, a fibril‐like structure was observed as the molecular weight of HDPE was higher (with lower MFI). The presence of HDPE fibers in the blends could not enhance the network structure, but could stop the crack propagation during fracture process, resulting in a further increase of the toughness. The prepared quaternary blend showed an impact strength of 9.3 kJ/m2 and a tensile strength of 25 MPa, which can be well used for TV backset to substitute HIPS because this system is economical and environmental friendly. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The influence of the compression‐molding temperature on the range of cocontinuity in polystyrene (PS)/ethylene–vinyl acetate (EVA) copolymer blends was studied. The blends presented a broad range of cocontinuity when compression‐molded at 160°C, and they became narrower when compression‐molded at higher temperatures. A coarsening effect was observed in PS/EVA (60:40 vol %) blends upon compression molding at higher temperature with an increase in the phase size of the cocontinuous structure. Concerning PS/EVA (40:60 vol %) blends, an increase in the mixing and molding temperatures resulted in a change from a cocontinuous morphology to a droplet–matrix morphology. This effect was observed by selective extraction experiments and scanning electron microscopy. The changes in the morphology with the molding conditions affected the storage modulus. An increase in the storage modulus in blends compression‐molded at 160°C was observed as a result of dual‐phase continuity. An EVA copolymer with a higher vinyl acetate content (28 wt %) and a higher melt‐flow index resulted in blends with a broader range of cocontinuity. This effect was more pronounced in blends with lower amounts of PS, that is, when EVA formed the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 386–398, 2003  相似文献   

13.
A radiation grafted copolymer of polycarbonate (PC) and polystyrene (PS) was used as a compatibilizer of PC/PS melt blends. The compatibility and morphology of PC/PS/PC-g-PS blends were studied by differential scanning calorimetry and scanning electron microscopy. As a consequence of the addition of PC-g-PS, the compatibility of PC/PS blends was improved; the dimensions of the dispersed phases and the interfacial tension between the two phases were reduced. Additionally, stabilization against gross segregation and interfacial adhesion of the blends were also improved by adding PC-g-PS as a compatibilizer. © 1998 SCI.  相似文献   

14.
Core–shell polybutadiene‐graft‐polystyrene (PB‐g‐PS) rubber particles with different ratios of polybutadiene to polystyrene were prepared by emulsion polymerization through grafting styrene onto polybutadiene latex. The weight ratio of polybutadiene to polystyrene ranged from 50/50 to 90/10. These core‐shell rubber particles were then blended with polystyrene to prepare PS/PB‐g‐PS blends with a constant rubber content of 20 wt%. PB‐g‐PS particles with a lower PB/PS ratio (≤70/30) form a homogeneous dispersion in the polystyrene matrix, and the Izod notched impact strength of these blends is higher than that of commercial high‐impact polystyrene (HIPS). It is generally accepted that polystyrene can only be toughened effectively by 1–3 µm rubber particles through a toughening mechanism of multiple crazings. However, the experimental results show that polystyrene can actually be toughened by monodisperse sub‐micrometer rubber particles. Scanning electron micrographs of the fracture surface and stress‐whitening zone of blends with a PB/PS ratio of 70/30 in PB‐g‐PS copolymer reveal a novel toughening mechanism of modified polystyrene, which may be shear yielding of the matrix, promoted by cavitation. Subsequently, a compression‐induced activation method was explored to compare the PS/PB‐g‐PS blends with commercial HIPS, and the result show that the toughening mechanisms of the two samples are different. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

16.
Poly(isoprene–butyl acrylate) block copolymers with a variety of molecular weights and compositions were prepared via a controlled free‐radical polymerization with an iniferter. Subsequently, the block copolymers were used as compatibilizers in natural/acrylic rubber blends. Scanning electron micrographs revealed a cocontinuous morphology in the case of the normal blends with a low natural rubber content (20 wt %), whereas the blends that contained more natural rubber showed a dispersed‐particle morphology. When the rubbers were blended with 5 wt % block copolymer, the particle size decreased, and the tensile strength of the resulted blends increased, regardless of the block copolymer characteristics. For the blend that exhibited a cocontinuous morphology, the most effective compatibilizer was the block copolymer with an average molecular weight of 22,000 g/mol, containing mainly (87%) polyisoprene block. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 921–927, 2003  相似文献   

17.
The effect of the molecular structure of styrene–butadiene (SB) block copolymers and ethene–propene (EPM) random copolymers on the morphology and tensile impact strength of low‐density polyethylene (LDPE)/polystyrene (PS) (75/25) blends has been studied. The molecular characteristics of SB block copolymers markedly influence their distribution in LDPE/PS blends. In all cases, an SB copolymer is present not only at the interface but also in the bulk phases; this depends on its molecular structure. In blends compatibilized with diblock copolymers, compartmentalized PS particles can also be observed. The highest toughness values have been achieved for blends compatibilized with triblock SB copolymers. A study of the compatibilization efficiency of SB copolymers with the same number of blocks has shown that copolymers with shorter PS blocks are more efficient. A comparison of the obtained results with previous results indicates that the compatibilization efficiency of a copolymer strongly depends both on the blend composition and on the properties of the components. The compatibilization efficiency of an EPM/SB mixture is markedly affected by the rheological properties of the copolymers. The addition of an EPM/SB mixture containing EPM with a higher viscosity leads to a higher improvement or at least the same improvement in the tensile impact strength of a compatibilized blend as the same amount of neat SB. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high‐impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleic‐anhydride‐(MA)‐grafted HIPS (HIPS‐g‐MA) were used. It was found that the domain size of HIPS‐g‐MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010–HIPS‐g‐MA blends were enhanced much more than that of PA1010–HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS‐g‐MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (≤35 wt %), the Tc of PA1010 shifted towards lower temperature, from 178 to 83°C. An additional transition was detected at a temperature located between the Tg's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010–HIPS‐g‐MA 80/20. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857–865, 1999  相似文献   

19.
The rheological and mechanical properties of a polystyrene‐polyisobutylene‐polystyrene (SIBS) block copolymer containing 30 wt% polystyrene (PS) and its blends with PS (SIBS/PS) were investigated. Atomic Force Microscopy (AFM) was used to visualize the nanostructured phase morphology of the SIBS, which is responsible for the mechanical strength of this thermoplastic rubber. The order‐disorder transition (ODT) for the SIBS block copolymer was found to be above 250°C. SIBS/PS blends with 10–30 wt% PS showed improved moduli and tensile strengths. Blends containing up to 40 wt% PS behaved as thermoplastic elastomers. In the region of linear viscoelasticity the blends revealed pronounced non‐Newtonian behavior and enhanced elasticity. This paper also reports the role of this styrenic block copolymer in the impact modification of PS.  相似文献   

20.
Compatibilizing effects of styrene/rubber block copolymers poly(styrene‐b‐butadiene‐b‐styrene) (SBS), poly(styrene‐b‐ethylene‐co‐propylene) (SEP), and two types of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS), which differ in their molecular weights on morphology and selected mechanical properties of immiscible polypropylene/polystyrene (PP/PS) 70/30 blend were investigated. Three different concentrations of styrene/rubber block copolymers were used (2.5, 5, and 10 wt %). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the phase morphology of blends. The SEM analysis revealed that the size of the dispersed particles decreases as the content of the compatibilizer increases. Reduction of the dispersed particles sizes of blends compatibilized with SEP, SBS, and low‐molecular weight SEBS agrees well with the theoretical predictions based on interaction energy densities determined by the binary interaction model of Paul and Barlow. The SEM analysis confirmed improved interfacial adhesion between matrix and dispersed phase. The TEM micrographs showed that SBS, SEP, and low‐molecular weight SEBS enveloped and joined pure PS particles into complex dispersed aggregates. Bimodal particle size distribution was observed in the case of SEP and low‐molecular weight SEBS addition. Notched impact strength (ak), elongation at yield (εy), and Young's modulus (E) were measured as a function of weight percent of different types of styrene/rubber block copolymers. The ak and εy were improved whereas E gradually decreased with increasing amount of the compatibilizer. The ak was improved significantly by the addition of SEP. It was found that the compatibilizing efficiency of block copolymer used is strongly dependent on the chemical structure of rubber block, molecular weight of block copolymer molecule, and its concentration. The SEP diblock copolymer proved to be a superior compatibilizer over SBS and SEBS triblock copolymers. Low‐molecular weight SEBS appeared to be a more efficient compatibilizer in PP/PS blend than high‐molecular weight SEBS. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 291–307, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号