首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thin diamond films grown by chemical vapor deposition (CVD) process on Si substrates under similar deposition conditions in the microwave-excited (MW) and direct current (DC) plasma discharges were taken for comparative examination. Raman spectra, photoluminescence (PL) spectroscopy, and color cathodoluminescence scanning electron microscopy (CCL-SEM) have been used for characterization of the structure and composition features of poly-crystalline diamond films. No essential difference in Raman spectra for the CVD diamond films was detected. A significant difference was revealed in the PL spectra and in CCL-SEM images.  相似文献   

2.
    
Three‐dimensional optical super‐resolution imaging is capable of providing 3D visualization of cellular structures in nanoscale detail. The past decade has witnessed the blossoming of 3D super‐resolution imaging technologies. In this review, we comprehensively discuss and compare the imaging depth, resolution enhancement, and imaging speed of the existing 3D super‐resolution imaging techniques.  相似文献   

3.
4.
    
The scanning electron microscope (SEM) is usually operated with a beam voltage, V0, in the range of 10–30 kV, even though many early workers had suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage. The chief reason for this contradiction is poor instrumental performance when V0=1–3 kV, The problems include low source brightness, greater defocusing due to chromatic aberration greater sensitivity to stray fields, and difficulty in collecting the secondary electron signal. Responding to the needs of the semiconductor industry, which uses low V0 to reduce beam damage, considerable efforts have been made to overcome these problems. The resulting equipment has greatly improved performance at low kV and substantially removes the practical deterrents to operation in this mode. This paper reviews the advantages of low voltage operation, recent progress in instrumentation and describes a prototype instrument designed and built for optimum performance at 1 kV. Other limitations to high resolution topographic imaging such as surface contamination, the de-localized nature of the inelastic scattering event and radiation damage are also discussed.  相似文献   

5.
    
Backscattered electron spectroscopy offers detailed information for multilayer and subsurface-layer materials with distinct Z contrast: It can be used for the validation of Monte Carlo calculations, to obtain depth selective electron microtomographic images, and to determine the thickness of ultra thin films on bulk substrates. In this paper we describe a new energy-dispersive method for thickness determination of thin films on bulk aluminum using backscattered electron (BSE) spectra obtained by a polar, toroidal, electrostatic spectrometer. After a brief recapitulation of the spectrometer's geometry, the techniques for its energy calibration and the preparation of thin double-layer films are introduced. Backscattered electron measurements and thickness calibrations for Au and Cu films with thicknesses of 0–200 nm on bulk aluminum will be presented for various primary electron energies.  相似文献   

6.
J. Hejna 《Scanning》1995,17(6):387-394
Two scintillation backscattered electron (BSE) detectors with a high voltage applied to scintillators were built and tested in a field emission scanning electron microscope (SEM) at low primary beam energies. One detector collects BSE emitted at low take-off angles, the second at high takeoff angles. The low take-off detector gives good topographic tilt contrast, stronger than in the case of the secondary electron (SE) detection and less sensitive to the presence of contamination layers on the surface. The high take-off detector is less sensitive to the topography and can be used for detection of material contrast, but the contrast becomes equivocal at the beam energy of 1 keV or lower.  相似文献   

7.
In this study backscattered electron (BSE) imaging was used to display cellular structures stained with heavy metals within an unstained resin by atomic number contrast in successively deeper layers. Balb/c 3T3 fibroblasts were cultured on either 13-mm discs of plastic Thermanox, commercially pure titanium or steel. The cells were fixed, stained and embedded in resin and the disc removed. The resin block containing the cells was sputter coated and examined in a field-emission scanning electron microscope. The technique allowed for the direct visualization of the cell undersurface and immediately overlying areas of cytoplasm through the surrounding embedding resin, with good resolution and contrast to a significant depth of about 2 μm, without the requirement for cutting sections. The fixation protocol was optimized in order to increase heavy metal staining for maximal backscattered electron production. The operation of the microscope was optimized to maximize the number of backscattered electrons produced and to minimize the spot size. BSE images were collected over a wide range of accelerating voltages (keV), from low values to high values to give ‘sections' of information from increasing depths within the sample. At 3–4 keV only structures a very short distance into the material were observed, essentially the areas of cell attachment to the removed substrate. At higher accelerating voltages information on cell morphology, including in particular stress fibres and cell nuclei, where heavy metals were intensely bound became more evident. The technique allowed stepwise ‘sectional’ information to be acquired. The technique should be useful for studies on cell morphology, cycle and adhesion with greater resolution than can be obtained with any light-microscope-based system.  相似文献   

8.
    
Energy-dispersive x-ray (EDX) spectroscopy and backscattered electron (BSE) imaging are finding increased use for determining mineral content in microscopic regions of bone. Electron beam bombardment, however, can damage the tissue, leading to erroneous interpretations of mineral content. We performed elemental (EDX) and mineral content (BSE) analyses on bone tissue in order to quantify observable deleterious effects in the context of (1) prolonged scanning time, (2) scan versus point (spot) mode, (3) low versus high magnification, and (4) embedding in poly-methylmethacrylate (PMMA). Undemineralized cortical bone specimens from adult human femora were examined in three groups: 200x embedded, 200x unembedded, and 1000x embedded. Coupled BSE/EDX analyses were conducted five consecutive times, with no location analyzed more than five times. Variation in the relative proportions of calcium (Ca), phosphorous (P), and carbon (C) were measured using EDX spectroscopy, and mineral content variations were inferred from changes in mean gray levels (\"atomic number contrast\") in BSE images captured at 20 keV. In point mode at 200x, the embedded specimens exhibited a significant increase in Ca by the second measurement (7.2%, p < 0.05); in scan mode, a small and statistically nonsignificant increase (1.0%) was seen by the second measurement. Changes in P were similar, although the increases were less. The apparent increases in Ca and P likely result from decreases in C: -3.2% (p < 0.05) in point mode and -0.3% in scan mode by the second measurement. Analysis of unembedded specimens showed similar results. In contrast to embedded specimens at 200x, 1000x data showed significantly larger variations in the proportions of Ca, P, and C by the second or third measurement in scan and point mode. At both magnifications, BSE image gray level values increased (suggesting increased mineral content) by the second measurement, with increases up to 23% in point mode. These results show that mineral content measurements can be reliable when using coupled BSE/EDX analyses in PMMA-embedded bone if lower magnifications are used in scan mode and if prolonged exposure to the electron beam is avoided. When point mode is used to analyze minute regions, adjustments in accelerating voltages and probe current may be required to minimize damage.  相似文献   

9.
    
A semiconductor backscattered electron (BSE) detector has become popular in scanning electron microscopy session. However, detectors of semiconductor type have a serious disadvantage on the frequency characteristics. As a result, fast scan (e.g. TV‐scan) BSE image should be blurred remarkably. It is the purpose of this study to restore this degradation by using digital image processing technology. In order to improve it practically, we have to settle several problems, such as noise, undesirable processing artifacts, and ease of use. Image processing techniques in an impromptu manner like a conventional mask processing are unhelpful for this study, because a complicated degradation of output signal affects severely the phase response as well as the amplitude response of our SEM system. Hence, based on the characteristics of an SEM signal obtained from the semiconductor BSE detector, a proper inverse filter in Fourier domain is designed successfully. Finally, the inverse filter is converted to a special convolution mask, which is skillfully designed, and applied for TV‐scan moving BSE images. The improved BSE image is very effective in the work for finding important objects. SCANNING 31: 229–235, 2009. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
    
Backscattered electron imaging of HT29 colon carcinoma cells in a scanning electron microscope was studied. Thin cell sections were placed on indium‐tin‐oxide‐coated glass slides, which is a promising substrate material for correlative light and electron microscopy. The ultrastructure of HT29 colon carcinoma cells was imaged without poststaining by exploiting the high chemical sensitivity of backscattered electrons. Optimum primary electron energies for backscattered electron imaging were determined which depend on the section thickness. Charging effects in the vicinity of the SiO2 nanoparticles contained in cell sections could be clarified by placing cell sections on different substrates. Moreover, a method is presented for information depth determination of backscattered electrons which is based on the imaging of subsurface nanoparticles embedded by the cells.  相似文献   

11.
This paper concerns an important aspect of current developments in medical and biological imaging: the possibility for imaging soft tissue at relatively high resolution in the micrometer range or better, without tedious and/or entirely destructive sample preparation. Structures with low absorption contrast have been visualized using in-line phase contrast imaging. The experiments have been performed at the Advanced Photon Source, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high photon flux (>10(14) photons/s) at high photon energies (5-70 keV). Thick gerbil cochlear slices have been imaged and were compared with those obtained by light microscopy. Furthermore, intact gerbil cochleae have been imaged to identify the soft tissue structures involved in the hearing process. The present experimental approach was essential for visualizing the inner ear structures involved in the hearing process in an intact cochlea.  相似文献   

12.
在使用电子束真空镀膜时所产生的反射电子有可能射入基板,造成MgF2等不稳定化合物薄膜吸收的增加,另外在使用萤石(CaF2)基板时则会造成基板变色等问题。BS-60050EBS电子枪优化了反射电子发生部分的磁场分布、能够有效地抑制反射电子射入基板、提高镀膜产品的质量。  相似文献   

13.
In secondary and scanning transmission electron microscopes, secondary electron images of surface films can be dominated by an image derived from electrons back-scattered from the interface between the film and the substrate. The extent of the domination has been established by studying the variation in image obtained using primary beams of different energy and by platinum coating to enhance surface secondary electron emission. Studies of thicker films also established that chemical or structural difference within a film also lead to imaging effects. In general, 5 keV electrons are the most effective in producing subsurface and structural or chemical imaging effects.  相似文献   

14.
    
Computer aided x‐ray microtomography is an increasingly popular method to investigate the structure of materials. Continuing improvements in the technique are resulting in increasingly larger data sets. The analysis of these data sets generally involves executing a static workflow for multiple samples and is generally performed manually by researchers. Executing these processes requires a significant time investment. A workflow which is able to automate the activities of the user would be useful. In this work, we have developed an automated workflow for the analysis of microtomography scanned bread dough data sets averaging 5 GB in size. Comparing the automated workflow with the manual workflow indicates a significant amount of the time spent (33% in the case of bread dough) on user interactions in manual method. Both workflows return similar results for porosity and pore frequency distribution. Finally, by implementing an automated workflow, users save the time which would be required to manually execute the workflow. This time can be spent on more productive tasks.  相似文献   

15.
Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methyl-methacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.  相似文献   

16.
Measurements performed in an electron microscope with the mirror operation mode are most sensitive to local electric fields and geometrical roughness of any kind of the object being studied. The object with a geometrical relief is equivalent to a smooth surface with an effective distribution of microfields. Electrons forming the image interact with the local microfields for an extended time: during approach to the object, deceleration and acceleration away from the object. As a result, the electron trajectories can be strongly distorted, and the contrast changes essentially, leading to image deformation of details of the object under investigation and to lowering of the resolution. These effects are theoretically described and are illustrated by experiments. An analysis of these effects enables the real size and the shape of the object involved to be reconstructed.  相似文献   

17.
Quantitative assessment of critical dimensions of sub-wavelength structures, dark-field and bright-field modes of operation, recognition of nonpatterned anisotropic surfaces, and three-dimensional profiling of opaque and transparent samples are the new features of a super-resolution dual-channel heterodyne microscope that was introduced in a previous publication in this journal. The aforementioned modes of operation can be activated by simple rotation of a polarizer or insertion of a polarization-separating prism. Various experimental results are presented, demonstrating new performance capabilities of the heterodyne microscope.  相似文献   

18.
Danuta Kaczmarek 《Scanning》1997,19(4):310-315
The backscattered electron signal (BSE) in the scanning electron microscope (SEM) has been used for investigation of a specimen surface composition (COMPO mode). Creation of a material composition map is difficult because the dependence of backscattering coefficient η on the atomic number Z for Z > 40 is nonlinear. The method of increase in SEM resolution for the BSE signal by use of digital image processing has been proposed. This method is called the linearization of the η =f(Z) characteristic. The function approximating the experimental η =f (Z) dependence was determined by numerical methods. After characteristics linearization, the digital image in COMPO mode allows to distinguish between two elements with high atomic numbers if their atomic numbers differ by ΔZ = 1.  相似文献   

19.
Backscattered electron (BSE) images of bone exhibit graylevel contrast between adjacent lamellae. Mathematical models suggest that interlamellar contrast in BSE images is an artifact due to topographic irregularities. However, little experimental evidence has been published to support these models, and it is not clear whether submicron topographical features will alter BSE graylevels. The goal of this study was to determine the effects of topography on BSE image mean graylevels and graylevel histogram widths using conventional specimen preparation techniques. White-light interferometry and quantitative BSE imaging were used to investigate the relationship between the BSE signal and specimen roughness. Backscattered electron image graylevel histogram widths correlated highly with surface roughness in rough preparations of homogeneous materials. The relationship between BSE histogram width and surface roughness was specimen dependent. Specimen topography coincided with the lamellar patterns within the bone tissue. Diamond micromilling reduced average surface roughness when compared with manual polishing techniques but did not significantly affect BSE graylevel histogram width. The study suggests that topography is a confounding factor in quantitative BSE analysis of bone. However, there is little quantitative difference between low-to-moderate magnification BSE images of bone specimens prepared by conventional polishing or diamond micromilling.  相似文献   

20.
Various types of mirror lenses were developed some decades ago designed for several special tasks in microscopy. When compared with high‐end glass lenses, mirror lenses lead to an extraordinary image quality because of their supraapochromatic color fidelity and their high planarity; the working distances are significantly longer, and in most cases, the depth of field and resolution are higher than in concurrent glass lenses. In this respect, the microscopic advantages of mirror lenses seem to be comparable with the advantages of mirror telescopes in astronomy; for in observations of celestial bodies, mirror telescopes lead to better results than refractors based on glass lenses. When mirror lenses are available in light microscopy, not only common illumination modes can be carried out in transmitted or incident light, but also new and specific axial illumination techniques can be utilized, which cannot be achieved with normal glass lenses. This axial illumination, called “luminance contrast,” can be carried out in various modes, so that the resulting images can be compared with dark‐field, phase or interference‐contrast images. In all variants, especially, fine details within transparent specimens can be visible in maximized contrast and resolution, and blooming or haloing artifacts are significantly reduced or absent. These findings are based on theoretical consideration, and intensive practical tests carried out with several mirror lenses constructed in various optical designs. All in all, supramicroscopic image qualities could be expected if mirror lenses were produced based on the optimized manufacturing techniques available nowadays. Microsc. Res. Tech. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号