首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new adsorbent was developed by synthesizing 1,8‐diaminonaphthalene formaldehyde resin (DANFR) and coating it over the surface of silica gels. The silica composite was then treated with HCl for the activation of binding sites (?NH3+Cl?) on its surface. The structure of DANFR and its coating over the silanols were thoroughly characterized. Further, the adsorbent was applied to remove tungsten (W) from printed circuit board recycling unit wastewater that contained various co‐metal ions such as Na+, K+, Ca2+, Mg2+, Pb2+, NH4+, Zn2+, Cu2+ and Mn2+. The selective removal was achieved due to the anion exchange mechanism of Cl? with W(VI) while other cations get repelled from the surface (?NH3+) of the DANFR‐silica composite. X‐ray photoelectron spectroscopy studies, Raman spectra and overlay chromatograms of ion chromatography demonstrated selective separation of WO42? species from the wastewater. A removal capacity of 55.32 mg g?1 for W(VI) was achieved from the wastewater within 45 min of reaction (pH ca 6.0). Simultaneous treatment with neat aqueous solution of W brings out 63.27 mg g?1 of W(VI) removal. Finally, recovery of WO42? ions and regeneration of the adsorbent were carried out by using alkaline solution which demonstrated successful desorption, as investigated by using ion chromatography. © 2016 Society of Chemical Industry  相似文献   

2.
A Fenton‐like process, involving oxidation and coagulation, was evaluated for the removal of odorous compounds and treatment of a pulp and paper wastewater. The main parameters that govern the complex reactive system [pH and Fe(III) and hydrogen peroxide concentrations] were studied. Concentrations of Fe(III) between 100 and 1000 mg L?1 and of H2O2 between 0 and 2000 mg L?1 were chosen. The main mechanism for color removal was coagulation. The maximum COD, color and aromatic compound removals were 75, 98 and 95%, respectively, under optimal operating conditions ([Fe(III)] = 400 mg L?1; [H2O2] = 500–1000 mg L?1; pH = 2.5; followed by coagulation at pH 5.0). The biodegradability of the wastewater treated increased from 0.4 to 0.7 under optimal conditions and no residual hydrogen peroxide was found after treatment. However, partially or non‐oxidized compounds present in the treated wastewater presented higher acute toxicity to Artemia salina than the untreated wastewater. Based on the optimum conditions, pilot‐scale experiments were conducted and revealed a high efficiency in relation to the mineralization of organic compounds. Terpenes [(1S)‐α‐pinene, β‐pinene, (1R)‐α‐pinene and limonene] were identified in the wastewater and were completely eliminated by the Fenton‐like treatment. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
A pilot‐scale anaerobic/aerobic ultrafiltration system was tested to treat high‐strength tomato‐processing wastewater, to achieve stringent dry‐ditch discharge criteria of soluble biochemical oxygen demand (SBOD) <10 mg dm?3, total suspended solids <10 mg dm?3, ammonia nitrogen <3 mg dm?3 and soluble phosphorus <0.5 mg dm?3. The anaerobic/aerobic system achieved 99.4% SBOD removal, 91.9% NH3 N removal and 100% phosphorus removal at an overall hydraulic retention time of 1.5 days and solids retention time of 5 days during the tomato canning season. Respirometric studies confirmed that the pretreatment of tomato‐processing wastewater in the anaerobic reactor increased the readily biodegradable fraction, improved kinetics, and eliminated nutrient deficiency problem. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
Most of the kinetic studies on nitrification have been performed in diluted salts medium. In this work, the ammonia oxidation rate (AOR) was determined by respirometry at different ammonia (0.01 and 33.5 mg N‐NH3 L?1), nitrite (0–450 mg N‐NO2? L?1) and nitrate (0 and 275 mg N‐NO3? L?1) concentrations in a saline medium at 30 °C and pH 7.5. Sodium azide was used to uncouple the ammonia and nitrite oxidation, so as to measure independently the AOR. It was determined that ammonia causes substrate inhibition and that nitrite and nitrate exhibit product inhibition upon the AOR. The effects of ammonia, nitrite and nitrate were represented by the Andrews equation (maximal ammonia oxidation rate, rAOMAX, = 43.2 [mg N‐NH3 (g VSSAO h)?1]; half saturation constant, KSAO, = 0.11 mg N‐NH3 L?1; inhibition constant KIAO, = 7.65 mg N‐NH3 L?1), by the non‐competitive inhibition model (inhibition constant, KINI, = 176 mg N‐NO2? L?1) and by the partially competitive inhibition model (inhibition constant, KINA, = 3.3 mg N‐NO3? L?1; α factor = 0.24), respectively. The rAOMAX value is smaller, and the KSAO value larger, than the values reported in diluted salts medium; the KIAO value is comparable to those reported. Process simulations with the kinetic model in batch nitrifying reactors showed that the inhibitory effects of nitrite and nitrate are significant for initial ammonia concentrations larger than 100 mg N‐NH4+ L?1. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
This work evaluates Fenton oxidation for the removal of organic matter (COD) from cork‐processing wastewater. The experimental variables studied were the dosages of iron salts and hydrogen peroxide. The COD removal ranged from 17% to 79%, depending on the reagent dose, and the stoichiometric reaction coefficient varied from 0.08 to 0.43 g COD (g H2O2)?1 (which implies an efficiency in the use of hydrogen peroxide varying from 17% to 92%). In a study of the process kinetics, based on the initial rates method, the COD elimination rate was maximum when the molar ratio [H2O2]o:[Fe2+]o was equal to 10. Under these experimental conditions, the initial oxidation rate was 50.5 mg COD dm?3 s?1 with a rate of consumption of hydrogen peroxide of 140 mg H2O2 dm?3 s?1, implying an efficiency in the use of the hydrogen peroxide at the initial time of 77%. The total amount of organic matter removed by Fenton oxidation was increased by spreading the H2O2 and ferrous salt reagent over several fractions by 15% for two‐fractions and by 21% for three‐fractions. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
The effect of an enzymatic pretreatment, Pancreatic Lipase 250 (PL‐250), on the hydrolysis and size reduction of fat particles in slaughterhouse wastewater was characterised for enzyme doses ranging from 125 to 1000 mg dm?3 and initial particle sizes (Din) varying between 53 and 383 µm. Treatment with PL‐250 significantly reduced the size of pork fat particles in slaughterhouse wastewater. Particle size reduction increased with Din, possibly due to the more filamentous and plate‐like configuration of the larger fat particles, which could be easily broken at weak points. The smaller particles were observed to be denser and more spherical. Size reduction also increased with enzyme concentration, but the benefit of adding more enzyme diminished greatly as enzyme dose was increased. The maximum long‐chain fatty acid (LCFA) concentration in filtered samples was detected after 4–7 h of treatment and ranged from 8.2 to 34.9 mg dm?3. The linear rate of LCFA released in solution during enzymatic pretreatment ranged from 39.4 to 169.9 mg dm?3 d?1, and increased with enzyme concentration up to 500 mg dm?3. At a PL‐250 concentration of 1000 mg dm?3, the LCFA release rate decreased, maybe due to excessive layering of adsorbed enzyme on the fat particles or increased degradation of released LCFAs. The pretreatment appeared to be more efficient with beef than pork fat particles. However, the effect of an enzymatic pretreatment on a downstream anaerobic treatment of slaughterhouse wastewater containing fat particles remains to be tested. © 2001 Society of Chemical Industry  相似文献   

7.
BACKGROUND: This study considers batch treatment of saline wastewater in an upflow anaerobic packed bed reactor by salt tolerant anaerobic organisms Halanaerobium lacusrosei . RESULTS: The effects of initial chemical oxygen demand (COD) concentration (COD0 = 1880–9570 mg L?1), salt concentration ([NaCl] = 30–100 g L?1) and liquid upflow velocity (Vup = 1.0–8.5 m h?1) on COD removal from salt (NaCl)‐containing synthetic wastewater were investigated. The results indicated that initial COD concentration significantly affects the effluent COD concentration and removal efficiency. COD removal was around 87% at about COD0 = 1880 mg L?1, and efficiency decreased to 43% on increasing COD0 to 9570 mg L?1 at 20 g L?1 salt concentration. COD removal was in the range 50–60% for [NaCl] = 30–60 g L?1 at COD0 = 5200 ± .100 mg L?1. However, removal efficiency dropped to 10% when salt concentration was increased to 100 g L?1. Increasing liquid upflow velocity from Vup = 1.0 m h?1 to 8.5 m h?1 provided a substantial improvement in COD removal. COD concentration decreased from 4343 mg L?1 to 321 mg L?1 at Vup = 8.5 m h?1, resulting in over 92% COD removal at 30 g L?1 salt‐containing synthetic wastewater. CONCLUSION: The experimental results showed that anaerobic treatment of saline wastewater is possible and could result in efficient COD removal by the utilization of halophilic anaerobic bacteria. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
A sensor for NH+4 ions has been developed, which consists of immobilized micro-organisms (Bacillus subtilis, Pseudomonas aeruginosa, Trichosporon cutaneum) in combination with an electrochemical transducer. This sensor is based on the measurement of acceleration of respiration after addition of NH+4 in the presence of glucose. The physiological background of this signal and its connection with NH+4 ion uptake and/or metabolism is discussed. The response time of the sensor is about 5.10 s for NH+4 ions. A linearity was observed between 0.005 and 0.15 mmol dm?3 NH+4 ions. The sensitivity of the sensor remained almost constant for 12 days. The sensor was used to determine NH+4 ions in a microbial fermentation broth.  相似文献   

9.
Turnip roots, which are readily available in Mexico, are a good source of peroxidase, and because of their kinetic and biochemical properties have a high potential as an economic alternative to horseradish peroxidase (HRP). The efficiency of using turnip peroxidase (TP) to remove several different phenolic compounds as water‐insoluble polymers from synthetic wastewater was investigated. The phenol derivatives studied included phenol, 2‐chlorophenol, 3‐chlorophenol, o‐cresol, m‐cresol, 2,4‐dichlorophenol and bisphenol‐A. The effect of pH, substrate concentration, amount of enzyme activity, reaction time and added polyethylene glycol (PEG) was investigated in order to optimize reaction conditions. A removal efficiency ≥85% was achieved for 0.5 mmol dm?3 phenol derivatives at pH values between 4 and 8, after a contact time of 3 h at 25 °C with 1.28 U dm?3 of TP and 0.8 mmol dm?3 H2O2. Addition of PEG (100–200 mg dm?3) significantly reduced the reaction time required (to 10 min) to obtain >95% removal efficiency and up to 230% increase in remaining TP activity. A relatively low enzyme activity (0.228 U dm?3) was required to remove >95% of three phenolic solutions in the presence of 100–200 mg dm?3 PEG. TP showed efficient and fast removal of aromatic compounds from synthetic wastewaters in the presence of hydrogen peroxide and PEG. These results demonstrate that TP has good potential for the treatment of phenolic‐contaminated solutions. © 2002 Society of Chemical Industry  相似文献   

10.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

11.
Aerobic treatment of refinery wastewater was carried out in a 200 dm3 gas–liquid–solid three‐phase flow airlift loop bioreactor, in which a biological membrane replaced the activated sludge. The influences of temperature, pH, gas–liquid ratio and hydraulic residence time on the reductions in chemical oxygen demand (COD) and NH4‐N were investigated and discussed. The optimum operation conditions were obtained as temperature of 25–35 °C, pH value of 7.0–8.0, gas–liquid ratio of 50 and hydraulic residence time of 4 h. The radial and axial positions had little influence on the local profiles of COD and NH4‐N. Under the optimum operating conditions, the effluent COD and NH4‐N were less than 100 mg dm?3 and 15 mg dm?3 respectively for more than 40 days, satisfying the national primary discharge standard of China (GB 8978‐1996). Copyright © 2005 Society of Chemical Industry  相似文献   

12.
Halloysite nanotube (HNT), a natural clay, was modified with branched polyethyleneimine (PEI) to form PEI-HNT using epichlorohydrin (ECH) as coupling agent, then protonated with HCl to obtain H-PEI-HNTs providing [NH3]+[Cl] functionality for potential antimicrobial properties. Upon PEI modification, zeta potential value of HNTs was increased to +37.3 mV from −34.5 mV and to +41.1 mV for H-PEI-HNTs. Only 1.87 wt % H-element in HNT was increased to 3.03 wt % upon PEI modification along with newly generated elements of N and C at 2.99 and 9.93 wt %, respectively. Moreover, ionic liquid (IL) forms of HNTs with [NH3]+[N(CN)2], [NH3]+[PF6] and [NH3]+[BF4] functionality were generated via anion exchange of H-PEI-HNTs with sodium dicyanamide (SDC), ammonium hexafluorophosphate (AHFP), and sodium tetrafluoroborate (STFB). The antimicrobial properties of the modified, protonated, and IL forms of HNTs were determined via macro dilution, diffusion and agar screening tests against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 10145, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538 strains, and Candida albicans ATCC 10231 strains. It was found that H-PEI-HNTs possesses potent antimicrobial effect compared with the other forms of HNTs with 2–4 mg mL−1 MIC and 8–16 mg mL−1 MBC values via the macro dilution method. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48352.  相似文献   

13.
For a period of six years (1995–2000) the scavenging ratio, which is the ratio of a pollutant's concentration in water to its concentration in air, collected at an urban site in the Spanish Basque Country was studied. The aerosol is characterized by SO4 2? and NO3? with 1.79 and 1.61 μg m?3, respectively. Greater fractions of SO4 2?, NO3?, and NH4+ ions were present in the fine particle range, while greater fractions of other ions appeared in the coarse range. The most important species found in the precipitation is SO4 2? with 3.0 mg l?1. NO3?, Ca2+, and Cl? are the second most important ions. The volume-weighted mean concentration of H+ is 4.6 μg l?1 (pH = 5.3). The concentration of all analyzed ions (except H+) decreases throughout the rain event, showing the washout phenomenon of the rainwater. The scavenging ratio for the anthropogenic ions NO3?, SO4 2?, NH4+, and K+ is lower than the scavenging ratio for the marine-terrigenous ions, Cl?, Na+, and Ca2+.  相似文献   

14.
The adsorption of cadmium and zinc ions on natural bentonite heat-treated at 110°C or at 200°C and on bentonite acid-treated with H2SO4 (concentrations: 0·5 mol dm?3 and 2·5 mol dm?3), from aqueous solution at 30°C has been studied. The adsorption isotherms corresponding to cadmium and zinc may be classified respectively as H and L types of the Giles classification which suggests the samples have respectively a high and a medium affinity for cadmium and zinc ions. The experimental data points have been fitted to the Langmuir equation in order to calcualte the adsorption capacities (Xm) and the apparent equilibrium constants (Ka) of the samples; Xm and Ka values range respectively for 4·11 mg g?1 and 1·90 dm3 g?1 for the sample acid-treated with 2·5 mol dm?3 H2SO4 [(B)-A(2·5)] up to 16·50 mg g?1 and 30·67 dm3 g?1 for the natural sample heat-treated at 200°C [B-N-200], for the adsorption process of cadmium, and from 2·39 mg g?1 and 0·07 dm3 g?1, also for B-A(2·5), up to 4·54 mg g?1 and 0·45 dm3 g?1 [B-N-200], for the adsorption process of zinc. Xm and Ka values for the heat-treated natural samples were higher than those corresponding to the acid-treated ones. The removal efficiency (R) has also been calculated for every sample; R values ranging respectively from 65·9% and 8·2% [B-A(2·5)] up to 100% and 19·9% [B-N-200], for adsorption of cadmium and zinc.  相似文献   

15.
A bench-scale airlift submerged biofilm reactor was developed to test the possibility of nitrification of the final effluent discharged from a wastewater treatment process of a steel-making plant with an aim of reusing it as irrigation water. Despite the fluctuation of ammonia concentration in the wastewater (55–90 mg NH3-N dm−3), the ammonia was completely converted to nitrate in the hydraulic retention time of 8 h. When decreasing the hydraulic retention time further down to 4 h, the nitrification efficiency decreased to 67·9%. However, the nitrification efficiency could be significantly enhanced by increasing the airflow rate due to an increase in both of the oxygen transfer rate and liquid circulation rate. At the aeration rate of 4 dm3 min−1 and the hydraulic retention time of 4 h, the nitrification efficiency was as high as 92·6% and the nitrification rate was 34·6 mg NH3-N dm−3 bed h−1. © 1998 Society of Chemical Industry  相似文献   

16.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
This study was performed to evaluate the potential of acclimated halophilic microorganisms, commercial microorganisms, and microorganisms from polluted soil to degrade crude oil in high salinity oily wastewater (synthetic produced water) at different salt concentrations ranging from zero to 250,000?mg?L?1 of total dissolved solids (TDS). The highest degradation of crude oil (>60%) was found for acclimated halophilic microorganisms at TDS of 35,000?mg?L?1. An increase in the TDS concentrations above 145,000?mg?L?1 leads to a significant decrease in the growth of microorganisms. The results showed that efficiency of the commercial microorganisms was less than the acclimated halophilic microorganisms. The oil biodegradation followed substrate inhibition kinetics and the specific growth rate were fitted to the Haldane model. The biokinetic constants for the saline oily water at TDS of 35,000?mg?L?1, i.e., Y, Ks, µmax, and 1/Ki, were 0.21?mg?MLSS/mg crude oil, 0.27?mg?L?1, 0.019?h?1, and 0.002?mg?L?1, respectively.  相似文献   

18.
The treatment of phenolic wastewater was investigated in a gas–liquid–solid fluidised bed bioreactor containing polypropylene particles of density 910 kg m?3. Measurements of chemical oxygen demand (COD) versus residence time (t) were performed for various ratios of settled bed volume to bioreactor volume (Vb/VR) and air velocities (u) to determine the values of (Vb/VR) and u for which the largest reduction in COD occurred. Optimal operation, corresponding to the largest COD removal, was attained when the bioreactor was controlled at the ratio (Vb/VR) = 0.55 and an air velocity u = 0.036 m s?1. Under these conditions, the value of COD was practically at steady state for times greater than 50 h. At this steady state, only about 50% COD removal was achieved in the treatment of a ‘raw’ wastewater (no mineral salts added), whereas in the operation with wastewater enriched in nutrient salts approximately 90% COD removal was attained. The following amount of mineral salts (mg dm?3): (NH4)2SO4—500; KH2PO4—200; MgCl2—30; NaCl—30; CaCl2—20; and FeCl3—7, when added to wastewater before treatment, was sufficient for biomass growth. The application of low density particles (used as biomass support) in a bioreactor allowed the control of biomass loading in the apparatus. In the cultures conducted after change in (Vb/VR) at a set u, the steady state mass of cells grown on the particles was achieved after approximately 6 days of operation. With change in u at a set (Vb/VR), the new steady state biomass loading occurred after culturing for about 2 days. Phenolic wastewater was successfully treated in a bioreactor. In the operation conducted in a bioreactor optimally controlled at (Vb/VR) = 0.55, u = 0.036 m s?1 and t = 50 h, conversions greater than 99% were achieved for all phenolic constituents of the wastewater. Conversions of about 90% were attained for other hydrocarbons. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
Ionic liquids have been projected as the best solvent for extraction and separation of bioactive compounds from various origins. This review offers a collection of the published results, using ionic liquids for the extraction and purification of biomolecules. Ionic liquids have been studied as solvents, co-solvents and supported materials for separation of bioactive compounds. The ionic liquids-based extraction procedures were previously reported, such as ionic liquids-based solid-liquid extraction, liquid-liquid extraction and ionic liquids-modified materials are reviewed and compared to their performance. In this review, the main activities and future challenges are discussed, with major gaps identified using ionic liquids in extraction procedures and by advancing few steps to overcome these drawbacks.

Abbreviation: [(HSO3)C4MIM]+: 1-(4-sulfonylbutyl)-3-methylimidazolium; [(C6H3OCH2)2im]+: 1,3-dihexyloxymethylimidazolium; [CnC1MIM]+: 1-alkyl-2,3-dimethylimidazolium; [CnMIM]+; [Cn, 2, 3, 4, 6, 8, 10, 12]: 1-alkyl-3-methylimidazolium; [CnC1pyr]+: 1-alkyl-3-methylpyridinium; [Cnim]+: 1-alkylimidazolium; [Cnpyr]+: 1-alkylpyridinium; [aCnim]+: 1-allyl-3-alkylimidazolium; [C7H7MIM]+: 1-benzyl-3-methylimidazolium; [C4(C1C1C1Si)im]+: 1-butyl-3-trimethylsilylimidazolium; [(HOOC)C2MIM]+: 1-carboxyethyl-3-methylimidazolium; [(OH)CnMIM]+: 1-hydroxyalkyl-3-methylimidazolium; [(C2H5O)3SiC3MIM]+: 1-methyl-3-(triethoxy)silypropyl imidazolium; [(NH2)C3MIM]+: 1-propylamine-3-methylimidazolium; [CwHxNyOz]+: Chirally functionalized methylimidazolium; [P10(3OH)(3OH)(3OH)]+: Decyltris(3-hydrox- ypropyl) phosphonium; [N111(2OH)]+: N,N,N-trimethyl-N-(2-hydroxyethyl) ammonium (cholinium); [N00nn]+: N,N-dialkylammonium; [N0nn(2OH)]+: N,N-dialkyl-N-(2-hydroxyethyl) ammonium; [C10C10C1gluc]+: N,N-didecyl-N-methyl-d-glucaminium; [N11(2(O)1)0]+: N,N-dimethyl(2-methoxyethyl) ammonium; [N11(2OH)(C7H7)]+: N-benzyl-N,N-dimethyl-N-(2-hydroxyethyl) ammonium; [P66614]+: Trihexyltetradecylph- osphonium; [Pi(444)1]+: Triisobutyl (methyl) phosphonium; P.minus: Polygonum minus; NPs: Nanoparticle; ZnO : Zinc oxide nanoparticles ; Ni NPs: Nickel nanoparticles; MO: Methyl orange; UAE: Ultrasonic-assisted extraction; LLE: Liquid-liquid extraction; ABS: Aqueous biphasic system ; [Ace]?: Acesulfamate; [Ala]?: alalinate; [TMPP]?: bis(2,4,4-trimethylpentyl)phosphinate; : ; [NTf2]?: bis(trifluoromethylsulfonyl)imide; [[Br]–]: [Br]omide; [Calc]: calkanoate; [Cl]: chloride; [Bz]?: benzoate; [PF6]?: hexafluorophosphate; [HSO4]?: hydrogenosulfate; [OH]?: hydroxide; I: iodide; [Lac]?: lactate; [NO3]?: nitrate; [[Cl]O4]?: perchlorate; [Phe]?: phenilalaninate; [BF4]?: tetrafluoroborate; [SCN]?: thiocyanate; [C(CN)3]?: tricyanomethanide; [CF3CO2]?: trifluoroacetate; [CF3SO3]?: trifluoromethanesulfonate; [FAP]?: tris(pentafluoroethyl)trifluorophosphate; ILs: Ionic liquids; Ag NPs: Silver nanoparticle; Cu NPs: Copper nanoparticle; MB: Methylene blue; MR: Methyl red ; MAE: Microwave-assisted extraction; SLE: solid-liquid extraction.  相似文献   


20.
Pseudomonas aeruginosa AT10 produced a mixture of surface‐active rhamnolipids when cultivated on mineral medium with waste free fatty acids as carbon source. The development of the production process to an industrial scale included the design of the culture medium. A 24 full factorial, central composite rotational design and response surface modelling method (RSM) was used to enhance rhamnolipid production by Pseudomonas aeruginosa AT10. The components that are critical for the process medium were the carbon source, the nitrogen source (NaNO3), the phosphate content (K2 HPO4/KH2PO4 2:1) and the iron content (FeSO4·7H2O). Two responses were measured, biomass and rhamnolipid production. The maximum biomass obtained was 12.06 g dm?3 DCW, when the medium contained 50 g dm?3 carbon source, 9 g dm?3 NaNO3, 7 g dm?3 phosphate and 13.7 mg dm?3 FeSO4·7H2O. The maximum concentration of rhamnolipid, 18.7 g dm?3, was attained in medium that contained 50 g dm?3 carbon source, 4.6 g dm?3 NaNO3, 1 g dm?3 phosphate and 7.4 mg dm?3 FeSO4·7H2O. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号