首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat removal of more than 10 MW/m2 in heat flux has been required in high‐heat‐generation equipment in nuclear fusion reactors. In some conditions of water subcooling and velocity, there appears an extraordinary high heat flux boiling in the transition boiling region. This boiling regime is called micro‐bubble emission boiling (MEB) because many micro‐bubbles are spouted from the heat transfer surface accompanying a huge sound. The study intent is to obtain heat transfer performance of MEB in horizontal and vertical heated surfaces to parallel flow of subcooled water, comparing with CHF of this system. Three types of MEB with different heat transfer performance and bubble behavior are observed according to the flow velocity and liquid subcooling. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 130–140, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10077  相似文献   

2.
Subcooled quasi-pool boiling for water and for ethanol aqueous solutions of 10% by weight (10wt%) and 50wt% and ethanol in an ultrasonic field was experimentally performed for the upward flat heating surface of a copper block with 10 mm diameter under atmospheric conditions. Tested liquid subcooling was 15 K, 20 K, and 25 K for water and aqueous solutions of ethanol and 20 K, 30 K, and 40 K for 100wt% ethanol. At 20 K of liquid subcooling for water and ethanol aqueous solutions, no microbubble emission boiling (MEB) has been observed in quasi-pool boiling. Even if MEB occurs, the heat flux levels off and it turns easily to film boiling. In an ultrasonic field, MEB occurs remarkably. Then the heat flux increases to higher than the ordinary critical heat flux as observed in highly subcooled boiling. The experimental results show that the ultrasonic vibration introduces instability of the interface of liquid and vapor and accelerates MEB at 20 K of liquid subcooling for water and aqueous solutions of ethanol. At 15 K of liquid subcooling for water and aqueous solutions, no effect of ultrasonic vibration is observed. However, at 25K of liquid subcooling, the ultrasonic vibration extends MEB region to higher superheating of the heating surface for aqueous solutions of ethanol. The maximum heat flux in MEB decreases with increasing of ethanol concentration and becomes critical heat flux for 100wt% ethanol. No effect of ultrasonic vibration on boiling is observed for the 100wt% ethanol in these experiments.  相似文献   

3.
A simultaneous visualization and measurement study has been carried out to investigate subcooled flow boiling and microbubble emission boiling (MEB) phenomena of deionized water in a partially heated Pyrex glass microchannel, having a hydraulic diameter of 155 μm, which was integrated with a Platinum microheater. Effects of mass flux, inlet water subcooling and surface condition of the microheater on subcooled flow boiling in microchannels are investigated. It is found that MEB occurred at high inlet subcoolings and at high heat fluxes, where vapor bubbles collapsed into microbubbles after contacting with the surrounding highly subcooled liquid. In the fully-developed MEB regime where the entire microheater was covered by MEB, the mass flux, the inlet water subcooling and the heater surface condition have only small effects on the boiling curves. The occurrence of MEB in microchannel can remove a large amount of heat flux, as high as 14.41 MW/m2 at a mass flux of 883.8 kg/m2 s, with only a moderate rise in wall temperature. Therefore, MEB is a very promising method for cooling of microelectronic chips. Heat transfer in the fully-developed MEB in the microchannel is presented, which is compared with existing subcooled flow boiling heat transfer correlations for macrochannels.  相似文献   

4.
In previous papers (Int J Heat Mass Transfer, 2008;50:3481–3489, 2009;52: 814–821), the authors conducted measurements of liquid–vapor structures in the vicinity of a heating surface for subcooled pool boiling on an upward‐facing copper surface by using a conducting probe method. We reported that the macrolayer dryout model is the most appropriate model of the CHF and that the reason why the CHF increases with increasing subcooling is most likely that a thick macrolayer is able to form beneath large vapor masses and the lowest heat flux of the vapor mass region shifts towards the higher heat flux. To develop a mechanistic model of the CHF for subcooled boiling, therefore, it is necessary to elucidate the effects of local subcooling on boiling behaviors in the vicinity of a heating surface. This paper measured local temperatures close to a heating surface using a micro‐thermocouple at high heat fluxes for water boiling on an upward‐facing surface in the 0 to 40 K range of subcooling. A value for the effective subcooling, defined as the local subcooling during the period while vapor masses are being formed was estimated from the detected bottom peaks of the temperature fluctuations. It was established that the effective subcooling adjacent to the surface remains at considerably lower values than the bulk liquid subcooling. This suggests that, from nucleation to coalescence, the subcooling of a bulk liquid has a smaller effect on the behavior of primary bubbles than the extent of the subcooling would appear to suggest. An empirical correlation of the effective subcooling is proposed to provide a step towards quantitative modeling of the CHF for subcooled boiling. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20277  相似文献   

5.
It has been considered that dry-out occurs easily in boiling heat transfer for a small channel, a mini- or microchannel, because the channel was easily filled with coalescing vapor bubbles. In the present study, the experiments of subcooled flow boiling of water were performed under atmospheric conditions for a horizontal rectangular channel for which the size is 1 mm height and 1 mm width, with a flat heating surface of 10 mm length and 1 mm width placed on the bottom of the channel. The heating surface has a top of copper heating block and is heated by ceramic heaters. In the high heat flux region of nucleate boiling, about 70–80% of the heating surface was covered with a large coalescing bubble and the boiling reached critical heat flux as observed by high-speed video. In the beginning of transition boiling, coalescing bubbles were collapsed to many fine bubbles and microbubble emission boiling was observed at liquid subcooling higher than 30 K. The maximum heat flux obtained was 8 MW/m2 (800 W/cm2) at liquid subcooling of higher than 40 K and a liquid velocity of 0.5 m/s. However, the surface temperature was very much higher than that of a centimeter-scale channel. The high-speed video photographs indicated that microbubble emission boiling occurs in the deep transition boiling region.  相似文献   

6.
This paper deals with heat transfer and critical heat flux (CHF) in subcooled flow boiling offering a fundamental study aimed at high heat flux cooling. Experiments with water at 0.12 MPa were conducted in a mass velocity range from 500 kg/m2s to 15,000 kg/m2s (velocity from 0.5 m/s to 15 m/s) and subcooling from 20 K to 60 K. A sheet of stainless steel (80 mm in heated length, 10 mm wide, and 0.2 mm thick) was mounted flush with a sidewall of a vertical rectangular channel (cross-section 20 mm by 30 mm) and heated directly using direct current. It was found that mass velocity and subcooling strongly affect CHF and heat transfer in non-boiling convection and partial nucleate boiling regimes. These two parameters have no appreciable influence in the fully developed nucleate boiling regime. In the parameter range used, CHF reached 15 MW/m2. Boiling bubble behavior just prior to reaching CHF was found to vary depending on mass velocity and subcooling. 1998 Scripta Technica, Heat Trans Jpn Res, 27(5): 376–389, 1998  相似文献   

7.
The present research is an experimental study of the effects of pressure, subcooling, and non-condensable gas (air) on the pool nucleate boiling heat transfer performance of microporous enhanced finned surfaces. The test surfaces, solid copper blocks with 1-cm2 bases and 5×5 square pin-fin arrays of 2, 4 and 8 mm fin lengths, were immersed in FC-72. The test conditions included an absolute pressure range of 30-150 kPa and a subcooling range of 0 (saturation) to 50 K. Effects of these parameters on nucleate boiling and critical heat flux (CHF) were investigated. In addition, differences between pure subcooled and gas-saturated conditions as well as horizontal and vertical base orientations were also investigated. Results showed that, in general, the effects of pressure and subcooling on both nucleate boiling and CHF were consistent with previously tested flat surface results, however, subcooling was found to significantly affect the high heat flux region of the microporous finned surfaces nucleate boiling curves. The relative enhancement of CHF from increased subcooling was greater for the microporous surface than the plain surface but less than a microporous flat surface. The horizontal orientation (horizontal base/vertical fins) was found to be slightly better than the vertical orientation (vertical base/horizontal fins). Correlations for both nucleate boiling and CHF for the microporous surfaces were also developed.  相似文献   

8.
IntroductionSeveral books had summarized inveshgationsanalyzing fins with a consent heat tusfer coefficient(e.g., see Kem and Kraus[']). When boiling occurs on a fin,the heat transfer coefficient along the fin is definitely notconstant. Inveshgated by the Pioneering works of Haleyand Westwatefv and Lai and Hsu['l, fin boiling ProCesshas received extensive attention. ~sl41 and Liaw andYehul reviewed the related lit~. BOth the heattransfer rate from the fin base, as well as the feasibleoper…  相似文献   

9.
Experiments were conducted to study the subcooled flow boiling heat transfer performance of FC-72 over silicon chips. For boiling heat transfer enhancement, two kinds of micro-pin-fins having fin thickness of 50 μm and fin heights of 60 and 120 μm, respectively, were fabricated on the silicon chip surface with the dry etching technique. The fin pitch was twice the fin thickness. The experiments were conducted at the fluid velocities of 0.5, 1 and 2 m/s and the liquid subcoolings of 15, 25 and 35 K. The micro-pin-finned surfaces showed a sharp increase in heat flux with increasing wall superheat and a large heat transfer enhancement compared to a smooth surface. The nucleate flow boiling curves for the two micro-pin-finned surfaces collapsed to one line showing insensitivity to fluid velocity and subcooling, while the critical heat flux values increased with fluid velocity and subcooling. The micro-pin-finned surface with a larger fin height of 120 μm provided a better flow boiling heat transfer performance and a maximum critical heat flux of 145 W/cm2. The wall temperature at the critical heat flux for the micro-pin-finned surfaces was less than 85 °C for the reliable operation of LSI chips.  相似文献   

10.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

11.
A quantitative analysis of critical heat flux (CHF) under high mass flux with high subcooling at atmospheric pressure was successfully carried out by applying a new transition region model for a macro-water sublayer on heated walls to the existing model of a vapor blanket over the macro-water sublayer. The CHF correlation proposed in this study could predict well the experimental data obtained for water mass flux of 940 to 20,300 kg/m2s using circulate tubes 2 to 4 mm in diameter and 30 to 100 mm in length with inlet subcooling of 30 to 90 °C and rectangular channels heated from one side with gaps of 3 to 20 mm, length of 50 to 305 mm, and inlet subcooling of 30 to 77 °C and revealed a unique feature of CHF, namely, that the effects of wall friction of subcooled boiling flow and the velocity of the steam blanket above the macro-water sublayer at atmospheric pressure become the dominant factors while they were not dominant at higher pressures. © 1997 Scripta Technica, Inc Heat Trans Jpn Res, 26 (1): 16–29, 1997  相似文献   

12.
Critical heat flux (CHF) of subcooled flow boiling with water in a tube with an internal twisted tape under nonuniform heating conditions was experimentally investigated by direct current heating of a stainless steel tube. The boiling curve of the subcooled flow under a high heat flux was measured to confirm the characteristics of the nucleate boiling. The net vapor generation (NVG) point almost agreed with the Levy correlation. The increase of the CHF with an internal twisted tape under nonuniform heating conditions was explained by assuming an alternate development and disruption of the bubble boundary layer in which the bubble boundary layer is assumed to be disrupted when the heat flux is lower than the NVG heat flux. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 25(5): 293–307, 1996  相似文献   

13.
Experiments are conducted here to investigate how the channel size affects the subcooled flow boiling heat transfer and associated bubble characteristics of refrigerant R-134a in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm in this study. From the measured boiling curves, the temperature undershoot at ONB is found to be relatively significant for the subcooled flow boiling of R-134a in the duct. The R-134a subcooled flow boiling heat transfer coefficient increases with a reduction in the gap size, but decreases with an increase in the inlet liquid subcooling. Besides, raising the imposed heat flux can cause a substantial increase in the subcooled boiling heat transfer coefficient. However, the effects of the refrigerant mass flux and saturated temperature on the boiling heat transfer coefficient are small in the narrow duct. Visualization of the subcooled flow boiling processes reveals that the bubbles are suppressed to become smaller and less dense by raising the refrigerant mass flux and inlet subcooling. Moreover, raising the imposed heat flux significantly increases the bubble population, coalescence and departure frequency. The increase in the bubble departure frequency by reducing the duct size is due to the rising wall shear stress of the liquid flow, and at a high imposed heat flux many bubbles generated from the cavities on the heating surface tend to merge together to form big bubbles. Correlation for the present subcooled flow boiling heat transfer data of R-134a in the narrow annular duct is proposed. Additionally, the present data for some quantitative bubble characteristics such as the mean bubble departure diameter and frequency and the active nucleation site density are also correlated.  相似文献   

14.
Experiments were conducted to investigate the heat transfer characteristics and cooling performance of subcooled liquid, water, flowing through rectangular cross-section microchanneled structures machined on a stainless steel plate. Heat transfer or flow mode transition was observed when the heating rate or wall temperature was increased. This transition was found to be suggestively induced by the variation in liquid thermophysical properties due to the significant rise of liquid temperature in the microstructures. The influence of such parameters as liquid velocity, subcooling, property variation, and microchannel geometric configuration on the heat transfer behavior, cooling performance and the heat transfer and liquid flow mode transition were also investigated. The experiments indicated that both slngle-phase forced convection and flow boiling characteristics were quite different from those in normal-sized tubes and the heat transfer was obviously intensified.  相似文献   

15.
The film boiling heat transfer around a vertical silver cylinder with a convex hemispherical bottom was investigated experimentally in quiescent water at atmospheric pressure. The experiments have been carried out using a quenching method. The diameter and length of the test cylinder are 32 mm and 48 mm, respectively. The test cylinder was heated to about 600 °C in an electric furnace and then cooled in saturated or subcooled water with an immersion depth of about 100 mm. The degree of liquid subcooling was varied from 0 K to 30 K. The analytical solutions for saturated and subcooled boiling are obtained by applying a two‐phase boundary layer theory for vapor film with a smooth interface. The experimental data correlates within ±15% based on the proposed prediction method. Also, the lower limit of film boiling was examined in terms of wall heat flux and degree of superheating. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20289  相似文献   

16.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

17.
A photographic study was carried out for the subcooled flow boiling of water to elucidate the rise characteristics of single vapor bubbles after the departure from nucleation sites. The test section was a transparent glass tube of 20 mm in inside diameter and the flow direction was vertical upward; liquid subcooling was parametrically changed within 0–16 K keeping system pressure and liquid velocity at 120 kPa and 1 m/s, respectively. The bubble rise paths were analyzed from the video images that were obtained at the heat flux slightly higher than the minimum heat flux for the onset of nucleate boiling. In the present experiments, all the bubbles departed from their nucleation sites immediately after the inception. In low subcooling experiments, bubbles slid upward and consequently were not detached from the vertical heated wall; the bubble size was increased monotonously with time in this case. In moderate and high subcooling experiments, bubbles were detached from the wall after sliding for several millimeters and migrated towards the subcooled bulk liquid. The bubbles then reversed the direction of lateral migration and were reattached to the wall at moderate subcooling while they collapsed due to the condensation at high subcooling. It was hence considered that the mechanisms of the heat transfer from heated wall and the axial growth of vapor volume were influenced by the difference in bubble rise path. It was observed after the inception that bubbles were varied from flattened to more rounded shape. This observation suggested that the bubble detachment is mainly caused by the change in bubble shape due to the surface tension force.  相似文献   

18.
The experimental investigation on vapor bubble growth is performed for analyzing subcooled boiling in a vertical annular channel with inner heating surface and upward water flow under atmospheric pressure. Bulk liquid mass flux ranges from 79 kg/m2s to 316 kg/m2s, and subcooling is from 40 K to 60 K. The bubble behaviors from inception to collapse are captured by High-speed photography. The performance of bubble growth recorded by the high-speed photography is given in this paper. The bubble behaviors, effect of the bubble slippage on the heat transfer, and various forces acting on the bubble are discussed.  相似文献   

19.
A composite heating surface composed of materials with different thermal conductivities can be expected to enhance heat transfer in nucleate boiling. This is because the end surface, with higher conductivity, will attain a higher temperature and as a result will serve to provide preferential nucleation sites. To confirm this idea, several composite surfaces were fabricated by uniaxially imbedding thin copper cylinders in the heat flow direction on a stainless steel circular plate 30 mm in diameter and 5 mm thick. The imbedded copper cylinders ranged from 1 mm to 4 mm in diameter and one to 77 in number. The heat transfer performance of these composite surfaces was investigated for pool boiling of saturated water at atmospheric pressure. It was confirmed that the copper cylinder surfaces exposed to water functioned as local hot spots to initiate preferential nucleate boiling, leading to higher boiling heat transfer coefficients than those on a homogeneous stainless steel surface. The measured void fraction above the heating surface verified intensive bubble generation on the surface of the copper cylinders. This situation continued up to a certain heat flux level and was then followed by nucleation on the mother surface of stainless steel around the copper cylinders. A numerical analysis of heat conduction within a composite wall simulated the temperature distribution within the wall and the variation in surface heat flux at the time of boiling incipience. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(3): 216–228, 1998  相似文献   

20.
The authors have conducted measurements of liquid–vapor behavior in the vicinity of a heating surface for saturated and subcooled pool boiling on an upward-facing copper surface by using a conductance probe method. A previous paper [A. Ono, H. Sakashita, Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling, Int. J. Heat Mass Transfer 50 (2007) 3481–3489] reported that thicknesses of a liquid rich layer (a so-called macrolayer) forming in subcooled boiling are comparable to or thicker than those formed near the critical heat flux (CHF) in saturated boiling. This paper examines the dryout behavior of the heating surface by utilizing the feature that a thin conductance probe placed very close to the heating surface can detect the formation and dryout of the macrolayer. It was found that the dryout of the macrolayer formed beneath a vapor mass occurs in the latter half of the hovering period of the vapor mass. Two-dimensional measurements conducted at 121 grid points in a 1-mm × 1-mm area at the center of the heating surface showed that the dryout commences at specific areas and spreads over the heating surface as the heat flux approaches the CHF. Furthermore, transient measurements of wall void fractions from nucleate boiling to transition boiling were conducted under the transient heating mode, showing that the wall void fraction has small values (<10%) in the nucleate boiling region, and then steeply increases in the transition boiling region. These findings strongly suggest that the macrolayer dryout model is the most appropriate model of the CHF for saturated and subcooled pool boiling of water on upward facing copper surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号