首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The lignin separated from the spent liquor of soda pulping of rice straw can replace a part of phenol in the condensation reaction with formaldehyde in a basic medium to form phenol lignin–formaldehyde (PL–F) resol resin. The production of phenol lignin–formaldehyde resol resin was carried out in two stages: First was the formation of the adduct (lignin phenol) using different lignin percentages; second was the condensation of the adduct with formaldehyde. Reaction variables, i.e., molar ratio of formaldehyde to phenol lignin, polymerization time, amount of sodium hydroxide as a catalyst, and polymerization temperature in the polymerization step were studied. Solubility of the produced resol resin in different solvents, its viscosity, and yield were determined. Lignin could replace up to 40% of phenol in the produced resin. Infrared spectra of the prepared resin were determined. Structural similarity of phenol–formaldehyde to phenol lignin–formaldehyde resin was shown. Also, relative absorbance of characteristic bands of the resins were calculated and claimed too much on the effect of reaction parameters on the prepared resins.  相似文献   

2.
Wood-based resol resins were prepared from both water- and sodium hydroxide (NaOH)-catalyzed liquefied phenolated wood. The effects of various reaction parameters, e.g. the concentrations of phenol and formaldehyde, temperature, and time, on the extent of yield, free phenol content, molecular weight as well as the gluability of the resol resins have been evaluated. As far as the yield, free phenol content, and molecular weight are concerned, the optimum conditions of resol resin preparation were found to be a phenol : wood weight ratio of 4 : 6, a formaldehyde : phenol mole ratio of 1.5 : 1, a temperature of 82.5°C, and time 3 h. However, these optimum conditions changed when the performance of the adhesives was considered in terms of the adhesive bond strengths for plywood joints. The yield, molecular weights, polydispersity, and gluability of resol resins prepared from water-catalyzed liquefied wood were lower compared with those prepared from NaOH-catalyzed ones. In most cases, the dry-bond strengths of the experimental plywood joints exceeded the minimum Japan Agricultural Standard (JAS) values. On the other hand, except at a higher formaldehyde: phenol ratio (i.e. 2.0 : 1 mole ratio), the plywood joints of all samples delaminated during 'boil-dry-boil' cyclic treatments. However, both dry- and wet-bond strengths of the plywood joints could be improved to exceed standard values by using an additional crosslinking agent, e.g. poly(methylene (polyphenyl isocyanate)) (polymeric MDI). The adhesive perfomance of the wood-based resol resins was explained on the basis of the adhesion between wood veneers and resol resin adhesives.  相似文献   

3.
Raw and dewaxed jute felt composites were prepared with resol and lignin modified phenol formaldehyde resin. Four different types of lignin modified resins were used by replacing phenol with lignin. The lignin modified resins were prepared from purified lignin obtained from paper industry waste black liquor. To investigate bonding between jute and resin, IR spectroscopy of jute felts and composites was carried out. The thermal stability of the composites was assessed by DSC and TGA. It was found that the lignin resin jute composite is thermally more stable than resol composite. XRD of jute felt and composite shows that the crystallinity of the jute fiber increases after composite preparation. The lignin resin composites were tested for water absorption and thickness swelling, and it was found that the results are comparable with those of resol jute composite. Composites prepared from lignin phenol formaldehyde resin with 50% phenol replacement has shown 75% tensile strength retention to that of pure resol jute composite.  相似文献   

4.
To prepare phenolic resol resin, corn bran (CB) was liquefied in the presence of phenol and the liquefied CB was condensed with formaldehyde under alkaline condition. From NMR spectra of phenolated CB and phenolated CB–based resol resin, it was found that phenol was reacted with depolymerized CB components and the phenolated CB was methylolated by condensation with formaldehyde. Molecular weight distribution was divided into a high molecular weight zone, attributed mainly to phenolated CB, and a low molecular weight zone, which was attributed to the condensation reactants of formaldehyde and the unreacted phenol of liquefied CB. When reaction conditions became severe, a high molecular weight zone was increased. Formaldehyde/unreacted phenol of liquefied CB molar ratio most affected the change of a low molecular weight zone. To reduce the viscosity of the phenolated CB–based resol resin, a milder condensation condition was required compared with that for preparing the conventional resol resin. Properties of the resol resin were comparable to those of conventional resol resin for plywood manufacture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1365–1370, 2003  相似文献   

5.
周平  谢晖  黄莉 《中国胶粘剂》2007,16(3):11-14
以两步法合成自凝性松香改性酚醛树脂,重点研究了酚醛浆的合成,通过考察酚醛摩尔比、催化剂用量、反应温度和反应时间对酚醛浆缩合反应的影响,得到适宜的酚醛浆合成条件:酚醛摩尔比1:1:5,催化剂用量为对叔丁基苯酚质量的3%,反应温度60℃,反应时间2.5-3 h。并对酚醛浆进行了GPC、VPO及红外光谱分析。利用该酚醛浆合成了具有良好自凝性的松香改性酚醛树脂。  相似文献   

6.
For the synthesis of biomass-based resol resins, cornstalk powders were liquefied in a hot-compressed phenol–water (1:4, wt./wt.) medium at 300–350 °C. It was observed that essentially no phenol was reacted with the cornstalk degradation intermediates during the liquefaction process. The cornstalk-derived bio-oils contained oligomers of phenol and substituted phenols, originated primarily from the lignin component of the cornstalk feedstock. Using the cornstalk-derived bio-oils, resol resins were readily synthesized under the catalysis of sodium hydroxide. The biomass-derived resol resins were brown viscous liquids, possessing broad molecular weight distributions. In comparison with those of a conventional phenol resol resin, the properties of the bio-based resins were characterized by GPC, FTIR, DSC and TGA. The as-synthesized bio-oil resol resin exhibited typical properties of a thermosetting phenol–formaldehyde resin, e.g., exothermic curing temperatures at about 150–160 °C, and an acceptable residual carbon yield of ca 56% at 700 °C for the cured material.  相似文献   

7.
将甲醛溶液、多聚甲醛共同与苯酚反应,在NaOH碱性催化剂作用下,通过逐步共聚制备可发性甲阶酚醛树脂(PF),然后将可发性甲阶PF与环保型发泡剂、匀泡剂和自制复合酸固化剂混合制备了阻燃绝热PF泡沫塑料.通过对甲醛/苯酚配比(物质的量之比即F/P)进行单因素分析,重点研究了制得的PF泡沫塑料的泡孔结构、力学性能、绝热性能和阻燃性能,并通过锥形量热仪对PF泡沫塑料的燃烧性能进行了分析.结果表明,当F/P=2.0时,制得的PF泡沫塑料泡孔均匀致密,其孔径为268 μm,弯曲强度为0.24 MPa,压缩强度为0.39 MPa,热导率为0.046 W/(m·K),氧指数为54.3%,热释放速率为0.57 kW/m2,烟灰产率仅为9.6 m2/m2,峰值CO产量仅为1.8584 kg/kg.  相似文献   

8.
采用多聚甲醛代替37%甲醛溶液与苯酚逐步加成聚合,合成可发性甲阶酚醛树脂。通过粘度、固含量、游离苯酚和甲醛含量及凝胶时间测定以及IR,GPC和TG分析研究了多聚甲醛-苯酚物质的量比为1.8∶1条件下,缩聚反应温度及催化剂加入量对可发性甲阶酚醛树脂性能的影响。结果表明,缩聚反应温度为90℃,催化剂质量分数为5%(以苯酚质量计)时,可得到性能优良的可发性甲阶酚醛树脂,其性能如下:粘度2.6 Pa·s,游离甲醛质量分数1.23%,游离苯酚质量分数5.13%,热失重质量残留率50%以上。  相似文献   

9.
The structure of ZnO-catalyzed phenol–urea–formaldehyde (PUF) resin at different synthesis stages was analyzed by liquid 13C nuclear magnetic resonance spectroscopy. The results showed that the general structure of ZnO-catalyzed PUF resin was almost the same as the control PUF resin. Addition reaction between phenol and formaldehyde mainly occurred at the first stage. Total methylol groups amount between phenols of the control resin was a little lower than that of the ZnO-catalyzed PUF resin. Co-condensation and self-condensation reaction occurred at the second stage. The preparation method of ZnO-catalyzed PUF resin favored the co-condensation reaction between phenol methylol groups and urea units, while self-condensation reaction dominated the control resin at the second stage. Formaldehyde completely reacted for both the control and ZnO-catalyzed PUF final resin. The total amount of methylol and methylene groups between urea units and phenols, respectively, was almost the same for the two final resins. The total quantity of methylol groups between phenols represented a continuing downward trend from the first stage to the final stage, and the amount of methylol group (p-Ph–CH2OH) of ZnO-catalyzed PUF resin was 30% more than that of the control resin. Total co-condensed methylene groups amount of ZnO-catalyzed PUF resin was greater than that of the control resin, which indicated that ZnO could make the urea units well incorporated into the co-condensed PUF resin.  相似文献   

10.
The investigation of the thermal degradation of the char-formaing phenol–formaldehyde resins is conducted to provide information for the systematic design of high temperature flame-resistant phenolics. Three different processes of curing are used: (1) Formaldehyde or s-trioxane is reacted with m-substituted phenol–formaldehyde oligomers under acidic conditions to give the methylene bridged-novolac resins. (2) Phenol and m-substituted phenols are reacted with CH2O under basic conditions and then heated to give the methylene bridged resol resins. (3) p-Terephthaloyl chloride and m-and p-substituted novolac oligomers are reacted to give cured resins with ester linkages. The evaluation of the effect of various substituents indicates that the oxygen index (OI) increases from about 33 for unsubstituted phenolics to about 75 for meta-halogen substituted phenolics. The evaluation of the effect of various crosslinking agents shows that the OI for CH2O-cured phenolics is 75 as compared to 50 for the trioxane cured phenolics and to 40 for the terephthaloyl chloride cured phenolics. A set of phenolic copolymers with different weight percentage content of halogen substituted phenols are synthesized as novolacs and resols. The results surprisingly indicate no increase of OI for the cured novolac copolymers, whereas the increase is observed for the cured resol copolymers. The activation energy for the thermooxidative degradation of the cured novolacs is about 12–15 kJ/mol lower as compared to that of the curd resols.  相似文献   

11.
采用多聚甲醛代替37%的甲醛溶液,在20%NaOH水溶液催化下与苯酚逐步加成聚合,合成了可发性甲阶酚醛树脂。研究了多聚甲醛与苯酚物质的量比(F/P)对合成树脂固含量、粘度、游离苯酚、游离甲醛、凝胶时间、分子结构、分子质量、树脂热性能及泡沫性能的影响。结果表明,F/P值为1.8时,可得到性能优良成本较低的可发性甲阶酚醛树脂,树脂粘度1.4 Pa.s,游离甲醛质量分数1.17%,游离苯酚质量分数6.72%,羟甲基指数1.41,树脂分子质量在240左右,耐热性较好。  相似文献   

12.
以对叔丁基酚、苯酚、甲醛水溶液为原料,在氨水的催化下,合成了一种对叔丁基酚改性的甲阶酚醛树脂。考察了对叔丁基酚含量对固含量和涂料性能的影响。利用红外光谱、DSC和GPC方法分析了产物的结构,并与环氧树脂混合配制出一种性能优异的非双酚A型食品罐用环氧酚醛涂料。  相似文献   

13.
两步碱催化法合成水溶性酚醛树脂   总被引:10,自引:1,他引:10  
以苯酚∶甲醛=1∶3(摩尔)的比例,采用两步碱催化合成工艺,促使苯酚苯环上的邻、对位都能进行羟甲基化反应,在50℃~90℃程序升温下连续反应2小时,经减压脱水后,合成出固含量82%的水溶性甲阶酚醛树脂,残留甲醛量为1.1%(wt),游离酚为0.05%(wt)。  相似文献   

14.
Comparisons were made of differential scanning-calorimetric (DSC) thermograms of both liquid and powdered commercial phenol–formaldehyde resins. By a combination of the results from analyses under a variety of conditions, such as ambient pressure, high pressure, using freeze-dried samples, and also by direct observation of the resin-curing process in wood-veneer assemblies, the curing reactions of phenol–formaldehyde resins were found to differ for resol and novolac systems. At a heating rate of 10°C/min, the resol resin showed endothermic curing reactions at temperatures of about 150°C, while the novolac-type resin showed an exothermic peak maximum at about 160°C. Results are presented to show how DSC can be used to differentiate between a resol and novolac system.  相似文献   

15.
A liquefied wood‐based resol resin was prepared with excellent yield by a reaction of liquefied wood and formaldehyde under alkaline conditions. The effects of various reaction parameters on the extent of the yield of the resol resin, unreacted phenol content, and viscosity were investigated. Milder resol resinification conditions were required as compared to those used in conventional methods. The liquefied wood‐based resol resin was successfully applied to produce phenolic foam using appropriate combinations of foaming agents. Diisopropyl ether with a relatively higher boiling temperature was suitable for the foaming of liquefied wood‐based resol resin. Hydrochloric acid and poly(ethylene ether) of sorbitan monopalmitate were used as a catalyst and a surfactant, respectively. The obtained foams showed satisfactory densities and compressive properties, comparable to those of foams obtained from conventional resol resin. Foams with low density were obtained by the blending of liquefied wood‐based resol resin and conventional resol resin. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 468–472, 2002; DOI 10.1002/app.10018  相似文献   

16.
In this study, we aimed to investigate the removal of basic dyes, including Safranin T (ST), Nile Blue A (NBA), and Brilliant Cresyl Blue (BCB), from aqueous solution with a sulfonated phenol–formaldehyde resin. This sulfonated resin was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorption properties of this resin were investigated under different adsorption conditions with different initial dye concentrations, contact times, and pH values. The adsorption equilibrium data were analyzed with Langmuir and Freundlich models. The adsorption behaviors of ST, NBA, and BCB onto the sulfonated resol‐type phenol–formaldehyde resin were better described by the Freundlich model. The adsorption capacities of the sulfonated resol resin for ST, NBA, and BCB decreased in the following order: NBA > BCB > ST. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
高级油墨用松香改性壬基酚醛树脂的合成   总被引:1,自引:0,他引:1  
采用二步法合成工艺,以壬基酚和松香及甲醛为主要原料,合成了松香改性酚醛树脂。对合成的各种反应条件进行了研究,确定了最佳合成工艺路线。首先用壬基酚和甲醛合成甲阶酚醛缩合物树脂,最佳合成工艺为:反应温度65℃,反应时间6 h;酚醛物质的量比为1∶2.4,然后在氧化锌和醋酸钙复合催化下,用聚合松香和松香混合物改性,聚合松香加入量为10%,反应温度260~270℃,实现了溶解黏度与庚烷容纳度均衡发展。  相似文献   

18.
在碱性条件下由竹材苯酚液化物和多聚甲醛制备出具有优良发泡性液化竹基酚醛树脂.考查了竹材液化物树脂化时间、温度、多聚甲醛与苯酚的物质的量比、氢氧化钠与苯酚物质的量比等因素对液化竹材酚醛树脂(BPE)黏度及其固含量的影响.结果表明,采用n(多聚甲醛)/n(苯酚)=1.2,树脂化时间为2 h,温度为70℃,n(氢氧化钠)/n...  相似文献   

19.
Hybrid polymer networks of diglycidyl ether of bisphenol (DGEBA) resin and phenolic novolac resins were prepared and tested for mechanical properties, hardness, and water absorption. The novolacs employed were based on each of phenol and substituted phenols such as p-cresol, t-butyl phenol, and cardanol. Cardanol is the main constituent of cashew nut shell liquid (CNSL), a renewable resource. Blends containing 10–15 wt% of novolac resin show substantial improvement in properties. These properties show a declining trend with higher novolac loading. The stoichiometric ratio between phenol and formaldehyde in the novolacs was optimized (1:0.8) for maximum property enhancement. The property profiles of the epoxy/novolac networks show that novolacs are effective modifiers for commercial epoxy resin. Incorporation of novolacs of substituted phenols results in relatively greater improvement in energy absorption during failure.  相似文献   

20.
针对酚醛树脂的固化问题,以MPF甲阶树脂为对象,酸性盐氯化铵为酸度调节剂,研究加入氯化铵后体系固化时间和游离甲醛的变化情况,并探讨了氯化铵添加量对它们的影响。结果显示,氯化铵完全可以作为酚醛甲阶树脂的固化剂;加入少量氯化铵时,固化速度就明显加快;氯化铵的加入量在0.6%~1.2%,固化时间和游离甲醛含量的减少都很明显;当氯化铵的添加量继续增加,游离甲醛含量继续减少,但对固化时同的影响很小。通过对游离甲醛的分析,确定甲醛随氯化铵添加量的变化率为0.4~0.6。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号