首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The N‐phenylmaleimide–styrene copolymer (PMS) was prepared and used to improve the brittleness of the cyanate ester resin. PMS was an effective modifier for improving the brittleness of the resin. The morphologies of the modified resins depended on PMS molecular weight and content. The most effective modification of the cyanate ester resin was attained because of the cocontinuous phase structure of the modified resin. Inclusion of 10 wt % PMS (Mw 133,000) led to an 160% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and the glass transition temperature, compared to the values for the unmodified resin. Low water absorptivity of the parent‐cured resin was not deteriorated by modification. The toughening mechanism was discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified cyanate ester resin system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2931–2939, 1999  相似文献   

2.
N-Phenylmaleimide–styrene copolymers (PMS) and reactive N-phenylmaleimide–styrene–p-hydroxystyrene (HSt) terpolymers (PMSH) containing p-hydroxyphenyl groups were used to improve the toughness of bisphenol A diglycidyl ether epoxy resin cured with methyl hexahydrophthalic anhydride. PMS and PMSH were effective modifiers for epoxies. The morphologies of the modified resins depended on modifier structure and content. The most effective modification for the cured resins was attained because of the co-continuous structure of the modified resins in both PMS and PMSH modification systems. When using 15wt% of PMS (M¯w 125000), the fracture toughness, KIC, for the modified resin increased by 230%, with retention of flexural modulus and glass transition temperature, but with a loss of flexural strength, compared with the values for the unmodified epoxy resin. When using PMSH as the reactive modifier, the efficiency decreased with increase in HSt content, because of the increasing extent of dispersion of the PMSH-rich continuous phases. In the modification with 10wt% PMSH (1·0mol% HSt unit, M¯w 294000), the modified resin had balanced physical properties. © of SCI.  相似文献   

3.
Hybrid modifiers composed of N-phenylmaleimide–styrene copolymers (PMS), and N-phenylmaleimide–styrene–p-hydroxystyrene terpolymers (PMSH) containing pendent p-hydroxyphenyl groups as functionalities, were used to improve the toughness of bisphenol-A diglycidyl ether epoxy resin cured with p,p′-diaminodiphenyl sulphone. The hybrid modifiers were effective in toughening the epoxy resin. When using the modifier composed of 10 wt% PMS (M?w 313000) and 2.5 wt% PMSH (2.5 mol% p-hydroxystyrene units, M?w 316000), the fracture toughness (KIC) for the modified resins increased 100% with no deterioration in the flexural properties and the glass transition temperature. The improvement in toughness of the epoxy resins was attained because of the co-continuous phase structure and the improvement in interfacial adhesion. The toughening mechanism is discussed in terms of the morphological characteristics of the modified epoxy resin systems.  相似文献   

4.
N-Phenylmaleimide (PMI)–N-(p-hydroxy)phenylmaleimide (HPMI)–styrene (St) terpolymers (HPMS), containing pendant p-hydroxyphenyl (HP) groups, were prepared and used to improve the toughness of triglycidyl aminocresol epoxy resin cured with p,p′-diaminodiphenyl sulfone. HPMS was effective as a modifier for the toughening of the epoxy resin. When using 15 wt % of HPMS (1.0 mol % HP unit, Mw 129,000), the fracture toughness (KIC) for the modified resin increased 190% with a medium loss of flexural strength. The toughening of epoxies could be attained because of the cocontinuous phase structure of the modified resins. The decrease in flexural strength was suppressed to some extent by introducing a functional group into the modifier. The toughening mechanism was discussed in terms of the morphological behavior of the modified epoxy resin system. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Soluble polyarylates were prepared from the reaction of 2,2‐bis(4‐hydroxyphenyl)propane (bisphenol‐A) and aromatic acid dichlorides (phthaloyl chloride and related diacid dichlorides), and used to improve the brittleness of a cyanate ester resin. The polyarylates include poly[2,2‐di(4‐phenylene)propane phthalate] (PPA), poly[2,2‐di(4‐phenylene)propane phthalate‐co‐2,2‐di(4‐phenylene)propane isophthalate] (IPPA) and poly[2,2‐di(4‐phenylene)propane phthalate‐co‐2,2‐di(4‐phenylene)propane terephthalate] (TPPA). Furthermore, a commercial polyarylate, U‐polymer, was also used as a modifier. The morphologies of the modified resins depended on the polyarylate structure and concentration. The most effective modification of the cyanate ester resin could be attained because of the co‐continuous phase structure of the modified resin: 25 wt% inclusion of IPPA (50 mol% isophthalate units, weight average molecular weight (Mw) 38 500 g mol?1) led to a 130% increase in the fracture toughness (KIC) for the modified resin, with retention of its flexural properties and glass transition temperature, as compared with the values for the unmodified resin. Water absorptivity of the IPPA‐modified resin was smaller than that of the unmodified resin. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
Poly(ester imide)s, prepared by the reaction of phthalic anhydride, N‐(4‐carboxyphenyl) trimellitimide and 1,2‐ethanediol, were used to improve the toughness of bisphenol‐A diglycidyl ether epoxy resin cured with 4,4′‐diaminodiphenyl sulfone (DDS). The poly(ester imide)s include poly(ethylene phthalate‐co‐ethylene N‐(1,4‐phenylene) trimellitimide dicarboxylate)s (PESIs) having 10, 20 and 30 mol% trimellitimide (TI) units, respectively. PESIs having 10 and 20 mol% TI units were effective as modifiers for toughening the cured epoxy resin. For example, the inclusion of 20 wt% of PESI (20 mol% TI unit, M W 19300 g mol?1) led to a 55% increase in the fracture toughness (KIC) of the cured resin (with an increase in flexural strength and modulus) and the modified resin had a particulate morphology. PESI having 30 mol% TI units was not effective because of degradation of the modifier by DDS. The toughening mechanism is discussed in terms of morphological and dynamic viscoelastic behaviour of the modified epoxy resin system. © 2001 Society of Chemical Industry  相似文献   

7.
Aromatic polyesters were prepared and used to improve the brittleness of the cyanate ester resin. The aromatic polyesters include poly(ethylene phthalate) (PEP) and poly(ethylene phthalate‐co‐1,4‐phenylene phthalate). The polyesters were effective modifiers for improving the brittleness of the cyanate ester resin. For example, inclusion of 20 wt % PEP (MW 19,800) led to a 120% increase in the fracture toughness (KIC) with retention in flexural properties and a slight loss of the glass transition temperature compared to the mechanical and thermal properties of the unmodified cured cyanate ester resin. The microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The thermal stability of the modified resins was lower than that of the unmodified resin as determined by thermogravimetric analysis. The water absorptivity of the modified resin increased significantly, compared to that of the unmodified cured cyanate ester resin. The toughening mechanism was discussed in terms of the morphological and dynamic viscoelastic behaviors of the modified cyanate ester resin system. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 208–219, 2000  相似文献   

8.
Poly(ester imide)s containing trimellitimide moieties have been used to reduce the brittleness of the bismaleimide resin composed of 4,4′‐bismaleimidediphenyl methane and o,o′‐diallyl bisphenol A. The poly(ester imide)s include poly[ethylene phthalate‐co‐ethylene N‐(1,4‐phenylene)trimellitimide dicarboxylate]s containing 20–40 mol% trimellitimide (TI) unit, and poly[trimethylene phthalate‐co‐trimethylene N‐(1,4‐phenylene)trimellitimide dicarboxylate]s (PESIP) containing 20 mol% TI unit. The poly(ester imide)s are effective modifiers for reducing the brittleness of the bismaleimide resin. For example, when using 30 wt% of PESIP (20 mol% TI unit, Mw 13 500 g mol?1), the fracture toughness (KIC) for the modified resin is increased by 80% with retention in flexural properties and a slight loss of the glass transition temperature, compared with the values of the unmodified cured bismaleimide resin. Microstructures of the modified resins have been examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified bismaleimide resin system. © 2004 Society of Chemical Industry  相似文献   

9.
The effect of matrix compositions on the toughening of bismaleimide resin by modification with N-phenylmaleimide–styrene copolymers (PMS) were examined. The bis-maleimide resin was composed of 4,4′-bismaleimidediphenyl methane (BMI), o,o′-diallyl bisphenol A (DBA), and triallyl isocyanurate (TAIC). The matrix structure was controlled by changing the equivalent ratio of the two allyl components (DBA and TAIC). Morphologies of the modified resins changed from particulate to cocontinuous and to inverted phase structures, depending on the modifier content. The most effective modification for the cured resins could be attained because of the cocontinuous structure of the modified resins. Inclusion of TAIC led to a decrease in the extent of dispersion of the cocontinuous phase, and the optimum matrix structure to improve the toughness was obtained on 20 eq % addition of TAIC. For example, when using 20 eq % of TAIC and 5 wt % of PMS (Mw 303,000), the fracture toughness (Kic) for the modified resins increased 100% at a moderate loss of flexural strength and with retention in flexural modulus and the glass transition temperature, compared to those of the unmodified cured Matrimid resin. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Cyanate esters are a class of thermal resistant polymers widely used as thermal resistant and electrical insulating materials for electric devices and structural composite applications. In this article, the effect of 2,2′‐diallyl bisphenol A (DBA) on catalyzing the thermal curing of cyanate ester resins was studied. The curing behavior, thermal resistance, and thermal mechanical properties of these DBA catalyzed cyanate ester resins were characterized. The results show that DBA is especially suitable for catalyzing the polymerization of the novolac cyanate ester resin (HF‐5), as it acts as both the curing catalyst through depressing the exothermic peak temperature (Texo) by nearly 100°C and the toughening agent of the novolac cyanate ester resin by slightly reducing the elastic modulus at the glassy state. The thermogravimetric analysis and dynamic mechanical thermal analysis show that the 5 wt % DBA‐catalyzed novolac cyanate ester resin exhibits good thermal resistance with Td5 of 410°C and the char yield at 900°C of 58% and can retain its mechanical strength up to 250°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1775–1786, 2006  相似文献   

11.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

12.
Amine‐terminated poly(arylene ether sulfone)–carboxylic‐terminated butadiene‐acrylonitrile–poly(arylene ether sulfone) (PES‐CTBN‐PES) triblock copolymers with controlled molecular weights of 15,000 (15K) or 20,000 (20K) g/mol were synthesized from amine‐terminated PES oligomer and commercial CTBN rubber (CTBN 1300x13). The copolymers were utilized to modify a diglycidyl ether of bisphenol A epoxy resin by varying the loading from 5 to 40 wt %. The epoxy resins were cured with 4,4′‐diaminodiphenylsulfone and subjected to tests for thermal properties, plane strain fracture toughness (KIC), flexural properties, and solvent resistance measurements. The fracture surfaces were analyzed with SEM to elucidate the toughening mechanism. The properties of copolymer‐toughened epoxy resins were compared to those of samples modified by PES/CTBN blends, PES oligomer, or CTBN. The PES‐CTBN‐PES copolymer (20K) showed a KIC of 2.33 MPa m0.5 at 40 wt % loading while maintaining good flexural properties and chemical resistance. However, the epoxy resin modified with a CTBN/8K PES blend (2:1) exhibited lower KIC (1.82 MPa m0.5), lower flexural properties, and poorer thermal properties and solvent resistance compared to the 20K PES‐CTBN‐PES copolymer‐toughened samples. The high fracture toughness with the PES‐CTBN‐PES copolymer is believed to be due to the ductile fracture of the continuous PES‐rich phases, as well as the cavitation of the rubber‐rich phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1556–1565, 2002; DOI 10.1002/app.10390  相似文献   

13.
Three different formulas with low‐cost resins, made up of N,N′‐bismaleimidephenylmethane (BMI), O,O′‐diallybisphenol A(BA), and N‐phenylmaleimide (NPMI) were developed. The properties of prepolymers, such as activation energies, enthalpy, and constants of reaction rate, were obtained by a kinetic programmer on DSC. Thermal and mechanical properties of neat resins were also studied. The results showed that the systems had low melting point and low viscosity. All cured resins presented excellent thermal and good mechanical properties. The mechanical properties could be affected by the quantity of NPMI and postcuring process. The water absorption is ≤1.98%; heat deflection temperature (HDT) is ≥250°C after aging for 100 h in distilled water of 90°C. The data indicate that the BMI can be effectively improved by adding BA and NPMI, while its heat resistance and hot/wet mechanical properties can be fairly retained. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2518–2522, 2001  相似文献   

14.
Terpolymers of N‐phenylmaleimide (PMI), styrene, and acrylonitrile (AN) were synthesized by emulsion polymerization. The thermal properties of terpolymers at different PMI and AN feed contents were investigated by differential scanning calorimetry, torsional braid analysis, thermogravimetric analysis, and a Vicat softening point test. The results showed the glass‐transition temperature and decomposition temperature of the terpolymers increased with increasing PMI feed content. Furthermore, the Vicat softening point of the terpolymers rose with PMI feed content. The weight‐ and number‐average molecular weights (M̄w and n) of the terpolymers were also determined by gel permeation chromatography. The results showed that the w and n of the terpolymers decreased with increasing PMI feed content and increased with increasing AN feed content. The mechanical properties (tensile strength and impact strength) of the terpolymers decreased with increasing PMI feed content and increased with increasing AN feed content. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1067–1073, 2001  相似文献   

15.
Liquid nitrile rubber, hyperbranched polyester, and core/shell rubber particles of various functionality, namely, vinyl, carboxyl, and epoxy, were added up to 20 wt % to a bisphenol‐A‐based vinylester–urethane hybrid (VEUH) resin to improve its toughness. The toughness was characterized by the fracture toughness (Kc) and energy (Gc) determined on compact tensile (CT) specimens at ambient temperature. Toughness improvement in VEUH was mostly achieved when the modifiers reacted with the secondary hydroxyl groups of the bismethacryloxy vinyl ester resin and with the isocyanate of the polyisocyanate compound, instead of participating in the free‐radical crosslinking via styrene copolymerization. Thus, incorporation of carboxyl‐terminated liquid nitrile rubber (CTBN) yielded the highest toughness upgrade with at least a 20 wt % modifier content. It was, however, accompanied by a reduction in both the stiffness and glass transition temperature (Tg) of the VEUH resin. Albeit functionalized (epoxy and vinyl, respectively) hyperbranched polymers were less efficient toughness modifiers than was CTBN, they showed no adverse effect on the stiffness and Tg. Use of core/shell modifiers did not result in toughness improvement. The above changes in the toughness response were traced to the morphology assessed by dynamic mechanical thermal analysis (DMTA) and fractographic inspection of the fracture surface of broken CT specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 672–680, 2002; DOI 10.1002/app.10392  相似文献   

16.
Bis(4‐cyanato‐3,5‐dimethylphenyl)anisylmethane was prepared by treating CNBr with bis(4‐hydroxy‐3,5‐dimethylphenyl)anisylmethane and blended with commercial epoxy resin in different ratios and cured at 120°C for 2 h, 180°C for 1 h, and postcured at 220°C for 1 h using diamino diphenyl methane as curing agent. Castings of neat resin and blends were prepared and characterized. The composite laminates were also fabricated with glass fiber using the same composition. The tensile strength of the composites increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2, for neat epoxy resin, to 0.8615 kJ/m2, for 9% cyanate ester‐modified epoxy system. The 10% weight loss temperature of pure epoxy (358°C) was increased to 390°C by the incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% in the epoxy resin increases the Tg from 143 to 147°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The influence of temperatures and flow rates on the rheological behavior during extrusion of acrylonitrile–butadiene–styrene (ABS) terpolymer melt was investigated by using a Rosand capillary rheometer. It was found that the wall shear stress (τw) increased nonlinearly with increasing apparent shear rates and the slope of the curves changed suddenly at a shear rate of about 103 s?1, whereas the melt‐shear viscosity decreased quickly at a τw of about 200 kPa. When the temperature was fixed, the entry‐pressure drop and extensional stress increased nonlinearly with increasing τw, whereas it decreased with a rise of temperature at a constant level of τw. The relationship between the melt‐shear viscosity and temperature was consistent with an Arrhenius expression. The results showed that the effects of extrusion operation conditions on the rheological behavior of the ABS resin melt were significant and were attributable to the change of morphology of the rubber phase over a wide range of shear rates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 606–611, 2002  相似文献   

18.
We carried out the free‐radical copolymerization of N‐phenylmaleimide with acrylic acid and acrylamide with an equimolar feed monomer ratio. We carried out the synthesis of the copolymers in dioxane at 70°C with benzoyl peroxide as the initiator and a total monomer concentration of 2.5M. The copolymer compositions were obtained by elemental analysis and 1H‐NMR spectroscopy. The hydrophilic polymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymers were performed. Hydrophilic poly(N‐phenylmaleimide‐co‐acrylic acid) and poly(N‐phenylmaleimide‐co‐acrylamide) were used for the separation of a series of metal ions in the aqueous phase with the liquid‐phase polymer‐based retention method in the heterogeneous phase. The method is based on the retention of inorganic ions by the polymer in conjunction with membrane filtration and subsequent separation of low‐molecular‐mass species from the formed polymer/metal‐ion complex. The polymer could bind several metal ions, such as Cr(III), Co (II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) inorganic ions, in aqueous solution at pH values of 3, 5, and 7. The interaction of the inorganic ions with the hydrophilic polymer was determined as a function of pH and a filtration factor. Hydrophilic polymeric reagents with strong metal‐complexing properties were synthesized and used to separate those complexed from noncomplexed ions in the heterogeneous phase. The polymers exhibited a high retention capability at pH values of 5 and 7. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

19.
Hydrosilylation of nadic anhydride with tetramethyl disiloxane yielded 5,5′‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboxylic anhydride (I), which further reacted with 4‐aminophenol to give N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide (II). Epoxidation of II with excess epichlorohydrin formed a siloxane‐ and imide‐modified epoxy oligomer (ie diglycidyl ether of N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide) (III). Equivalent ratios of III/I of 1/1 and 1/0.8 were prepared and cured to produce crosslinked materials. Thermal mechanical and dynamic mechanical properties were investigated by TMA and DMA, respectively. It was noted that each of these two materials showed a glass transition temperature (Tg) higher than 160 °C with moderate moduli. The thermal degradation kinetics was studied with dynamic thermogravimetric analysis (TGA) and the estimated apparent activation energies were 111.4 kJ mol?1 (in N2), 117.1 kJ mol?1 (in air) for III/I = 1/0.8, and 149.2 kJ mol?1 (in N2), 147.6 kJ mol?1 (in air) for III/I = 1/1. The white flaky residue of the TGA char was confirmed to be silicon dioxide, which formed a barrier at the surface of the polymer matrix and, in part, accounted for the unique heat resistance of this material. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Reverse iodine transfer polymerizations (RITP) of 2‐h‐ydroxyethyl acrylate (HEA) were performed in N,N‐dimethylformamide at 75°C using AIBN as initiator. Poly(2‐hydroxyethyl acrylate) (PHEA) with Mn = 3300 g mol?1 and Mw/Mn <1.5 were obtained. Homopolymerization of styrene in RITP was also carried out under similar conditions using toluene as solvent. The resulting iodo‐polystyrene (PS‐I) with (Mn, SEC = 607 g mol?1, polydispersity index (PDI) = 1.31) was used as a macroinitiator for the synthesis of amphiphilic block copolymers based on HEA with controlled well‐defined structure. Poly(styrene‐b‐2‐hydroxyethyl acrylate) (PS‐b‐PHEA) with Mn = 13,000 g mol?1 and polydispersity index (Mw/Mn) = 1.4 was obtained, copolymer composition was characterized using 1H‐NMR and FTIR, whereas SEC and gradient HPLC were used to confirm the formation of block copolymer and the living character of polymer chains. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号