首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a N,N′‐disubstituted 1,4‐phenylenediamine stabilizer and styrene‐butadiene block copolymer (SB)/ethylene‐propylene elastomer (EPDM) compatibilizer on mechanical properties and phase structure of pre‐aged low‐density polyethylene (LDPE; a model of aged recyclate)/high‐impact polystyrene (HIPS) blends was studied. A strong cooperative effect between the stabilizer and compatibilizer on the impact strength and fineness of the phase structure of LDPE/HIPS blends was found. Analysis of chemical reactions assumed to proceed in the system during processing led to the conclusion that improvement in the impact strength and phase structure was accounted for by reactive formation of a LDPE‐SB graft copolymer in a process supported by the presence of the bifunctional amine‐based stabilizer. The mixture of the amine stabilizer with SB/EPDM is a very promising upgrading system for post‐consumer plastic waste containing pre‐oxidized LDPE. J. VINYL. ADDIT. TECHNOL. 12:58–65, 2006. © 2006 Society of Plastics Engineers.  相似文献   

2.
Phase dispersion and coalescence in low‐density polyethylene (LDPE)/polyvinyl chloride (PVC) (70/30) blends influenced by compatibilizer and phase dispersant was studied. It was found that the morphology evolution of blends is sensitive to not only processing conditions (shear strength and mixing time) but also the added compatibilizer or phase dispersant. In our conditions, the stable phase morphology of each blend is obtained after mixing 15–25 min. In addition, the dispersed PVC phase in blends is easy to aggregate when the mixing rotor speed changed from high to low for the binary blends. As a compatibilizer, chlorided polyethylene (CPE) or nitrile rubber (NBR) can stabilize the morphology and hinder the coalescence of the dispersed PVC phase when added to the blends. However, the phase dispersant butadiene rubber (BR) or styrene butadiene rubber (SBR) could not stabilize the phase structure, although it could accelerate phase dispersion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 763–772, 2004  相似文献   

3.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

4.
The effect of molecular structure of six model styrene–butadiene (SB) block copolymers with various number of blocks and two lengths of styrene blocks on morphology, rheological properties, and impact strength of polystyrene (PS)/high‐density polyethylene (PE) blends was studied. It was found that location of SB copolymers in the blends is determined by the length of styrene blocks. The length of styrene blocks has similar effects on impact strength and linear viscoelastic properties of the blends. On the other hand, the correlation was not found between the effects of a number of blocks on impact strength and linear viscoelastic properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2303–2309, 2003  相似文献   

5.
The RTPP/ABS (rubber toughened polypropylene/poly (acrylonitrile‐co‐butadiene‐co‐styrene) blends, both noncompatibilized and compatibilized with polypropylene‐g‐polystyrene, were prepared by melt mixing in a Brabender Plasti‐Corder. As the torque ratio of RTPP and ABS was about 2, phase cocontinuity in the blends was achieved at ABS volume fractions around 0.16, which was evidenced by both microscopic analysis and mechanical testing. A new microscopic and image analysis technique was introduced, whose combination provides two semiquantitative parameters: structure roughness and structure cocontinuity. The latter parameter is closely associated with the predictive scheme based on the equivalent box model and percolation theory, which was used in this study. The predicted mechanical properties were confronted with the experimental data for tensile modulus, yield strength, and tensile impact strength. While the modulus of noncompatibilized blends is reasonably fitted by the model, the compatibilizer accounts for a positive deviation attributed to a strong interaction between the compatibilizer and the matrix. The yield strength of noncompatibilized blends indicates poor interfacial adhesion, which is so enhanced by the compatibilizer that no phase debonding occurs before yielding. Tensile impact strength, in contrast to modulus and yield strength, passes through a deep minimum for both types of blends; two tentative explanations of this detrimental behavior were suggested. POLYM. ENG. SCI., 47:582–592, 2007. © 2007 Society of Plastics Engineers.  相似文献   

6.
Polypropylene (PP) and acrylonitrile–butadiene–styrene (ABS) blends were prepared by a melt extrusion process. PP‐g‐acrylic acid was used as a compatibilizer. Blends with various compositions of PP, compatibilizer, and ABS were prepared and studied for morphological and mechanical properties. PP‐rich ternary blends showed good morphological and mechanical properties. The use of 5 wt % PP‐g‐acrylic acid as a compatibilizer resulted in a fine and homogeneous dispersion of the ABS phase in the PP phase. The experimental data of the tensile modulus showed good agreement in PP‐rich compositions with that generated from Kerner's model with perfect adhesion. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1731–1741, 2001  相似文献   

7.
The present work focuses on the compatibization of styrene‐co‐butadiene rubber (SBR)/acrylonitrile‐co‐butadiene rubber (NBR) blends with dichlorocarbene modified styrene‐co‐butadiene rubber (DCSBR) as a function of concentration of compatibilizer and composition of the blend. FTIR studies, differential scanning calorimetry and dynamic mechanical analysis reveal molecular level miscibility in the blends in the presence of compatibilizer. The formation of interfacial bonding is assessed by analysis of swelling behaviour, cure characteristics, stress–strain data and mechanical properties. These studies show that the compatibilizing action of DCSBR becomes more prominent as the proportion of NBR in the blend increases. The resistance of the vulcanizate towards thermal and oil ageing improved with compatibilization. The change in technological properties is correlated with the crosslink density of the blends assessed from swelling and stress–strain data. © 2001 Society of Chemical Industry  相似文献   

8.
Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interfacial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile–butadiene–styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate‐co‐maleic anyhydride) (MMA‐MA) and poly(methyl methacrylate‐co‐glycidyl methacrylate) (MMA‐GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (~5%) and small amounts of compatibilizer in the blend (~5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 842–847, 2003  相似文献   

9.
Blends of recycled polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) were prepared and some mechanical and morphological properties were investigated. To compatibilize these blends, ABS‐g‐(maleic anhydride) (ABS‐g‐MA) and (ethylene–vinyl acetate)‐g‐(maleic anhydride) (EVA‐g‐MA) with similar degree of grafting of 1.5% were used. To compare the effect of the type of compatibilizer on mechanical properties, blends were prepared using 3, 5 and 10 phr of each compatibilizer. A co‐rotating twin‐screw extruder was used for blending. The results showed that ABS‐g‐MA had no significant effect on the tensile strength of the blends while EVA‐g‐MA decreased the tensile strength, the maximum decrease being about 9.6% when using 10 phr of this compatibilizer. The results of notched Charpy impact strength tests showed that EVA‐g‐MA increased the impact strength of blends more than ABS‐g‐MA. The maximum value of this increase occurred when using 5 phr of each compatibilizer, it being about 54% for ABS‐g‐MA and 165% for EVA‐g‐MA. Scanning electron microscopy micrographs showed that the particle size of the dispersed phase was decreased in the continuous phase of PC by using the compatibilizers. Moreover, a blend without compatibilizer showed brittle behaviour while the blends containing compatibilizer showed ductile behaviour in fracture. © 2013 Society of Chemical Industry  相似文献   

10.
Immiscible blends of recycled poly(ethylene terephthalate) (R‐PET), containing some amount of polymeric impurities, and high‐density polyethylene (R‐PE), containing admixture of other polyolefins, in weight compositions of 75 : 25 and 25 : 75 were compatibilized with selected compatibilizers: maleated styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MA) and ethylene–glycidyl methacrylate copolymer (EGMA). The efficiency of compatibilization was investigated as a function of the compatibilizer content. The rheological properties, phase structure, thermal, and viscoelastic behavior for compatibilized and binary blends were studied. The results are discussed in terms of phase morphology and interfacial adhesion among components. It was shown that the addition of the compatibilizer to R‐PET‐rich blends and R‐PE‐rich blends increases the melt viscosity of these systems above the level characteristic for the respective binary blends. The dispersion of the minor phase improved with increasing compatibilizer content, and the largest effects were observed for blends compatibilized with EGMA. Calorimetric studies indicated that the presence of a compatibilizer had a slight affect on the crystallization behavior of the blends. The dynamic mechanical analysis provided evidence that the occurrence of interactions of the compatibilizer with blend components occurs through temperature shift and intensity change of a β‐relaxation process of the PET component. An analysis of the loss spectra behavior suggests that the optimal concentration of the compatibilizers in the considered blends is close to 5 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1423–1436, 2001  相似文献   

11.
In this research, it was studied the effects of the processing parameters applied to a twin screw extruder on the morphology and impact strength of poly(butylene terephthalate)/acrylonitrile‐butadiene‐styrene blends with and without a reactive compatibilizer. It was found that the increase of the feed rate highly decreased the ductile brittle transition temperature (DBTT) and slightly increased the room temperature impact strength (RTIS) of the compatibilized blends. Besides the influence of the feed rate, it was also found that the compatibilized blends could reach high RTIS and low DBTT values by an appropriate combination of the compatibilizer feeding position in the extruder, the screw rotation speed and the width of the kneading discs of the screw. The DBTT was found to be at least partially controlled by the spatial distribution of the rubbery particles, which was quantified by finite body tessellation, a method applied for the first time in polymer blends. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

12.
A tetra‐component blend, consisting of low‐density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), was studied as a model system of commingled plastic wastes (LDPE/PVC/PP/PS, mass ratio: 70/10/10/10). Effects of chlorinated polyethylene (CPE), ethylene–propylene–diene monomer (EPDM), styrene–butadiene–styrene (SBS), and their mixture (CPE/EPDM/SBS, mass ratio: 2/2/2) on the mechanical properties and morphology of the system were investigated. With addition of several elastomers and their mixture, the tensile strength of the blends decreased slightly, although both the elongation at break and the impact strength increased. Among these elastomers, EPDM exhibited the most significant impact modification effect for the tetra‐component blends. SBS and the mixture have a good phase‐dispersion effect for the tetra‐component blend. By adding a crosslinking agent [dicumyl peroxide (DCP)], the mechanical properties of the tetra‐component blends also increased. When either SBS or the mixture was added to the blend together with DCP, the probability that the crosslinking agent (DCP) would be at the interface improved because of the phase‐dispersion effect of SBS. Therefore, more co‐crosslinked products will form between LDPE and other components. Accordingly, remarkable improvement of the interfacial adhesion and hence the mechanical properties of the tetra‐component blends occurred. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2947–2952, 2001  相似文献   

13.
This work aims at studying the toughening process of poly(butylene terephthalate) (PBT) through its blends with styrene‐butadiene‐styrene block copolymers (SBS), in the presence of poly(styrene‐ran‐glicydil methacrylate) (PS‐GMA) as reactive compatibilizer. High values of impact strength were attained for PBT/SBS blends without the compatibilizer; however, this improvement is achieved for blends with SBS having similar viscosity compared to PBT, at high SBS content (40 wt %) and for blends prepared under specific processing conditions. The efficiency of the in situ compatibilization of PBT/SBS blends by PS‐GMA was found to be strongly dependent on the SBS and PS‐GMA molecular characteristics. Better compatibilizing results were observed through fine phase morphologies and lower ductile to brittle transition temperatures (DBTT) as the interfacial interaction and stability of the in situ formed compatibilizer are maximized, that is, when the miscibility between SBS and PS‐GMA and reaction degree between PBT and PS‐GMA are maximized. For the PBT/SBS/PS‐GMA blends under study, this was found when it is used the SBS with higher polystyrene content (38 wt %) and with longer PS blocks (Mw = 20,000 g mol?1) and also the PS‐GMA with moderate GMA contents (4 wt %) and with molecular weight similar to the critical one for PS entanglements (Mc = 35,000 g mol?1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5795–5807, 2006  相似文献   

14.
The blends of ionomers of sulfonated (styrene–butadiene–styrene) triblock copolymer with two polyolefins as well as the blends of polystyrene (PSt) with two polar, oil‐resistant elastomers, i.e., chlorohydrin rubber (CHR) and chlorosulfonated polyethylene (CSPE), using the ionomer as compatibilizer were studied. The blends of the ionomer with polypropylene or high density polyethylene showed synergistic effects with respect to tensile strength. With increasing PSt content, the blends change their behavior from thermoplastic elastomer to toughened plastics. The synergism is probably because of the thermoplastic interpenetrating polymer networks formed in the blend. The blends exhibited high resistance against diesel oil or toluene. When PSt was blended with CHR or CSPE using the ionomer as compatibilizer, only 2 or 3% ionomer was needed to enhance the mechanical properties of the blends. The effect is due to the ion–polar interaction of the ionomer with the polar polymer. The enhanced compatibility of the blends by the ionomer was demonstrated by DSC and Scanning electron micrograph. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1887–1894, 2006  相似文献   

15.
The objective of this research is to study the effect of using maleic anhydride‐grafted polyethylene‐octene elastomer (POE‐g‐MA) as a compatibilizer on nylon 6/acrylonitile‐butadiene‐styrene (ABS) copolymer blends. With POE‐g‐MA, nylon 6/ABS at a blending ratio of 80/20 showed an optimal result in modified impact property. Scanning electron microscopy (SEM) revealed that the particle sizes of ABS in the dispersed phase diminished as the amount of the added compatibilizer (POE‐g‐MA) increased. The compatibilizer reduced the surface tension between nylon 6 and ABS, thus increasing the compatibility of the two phases. Furthermore, studies of the rheological behavior of the system showed that the shear viscosity of nylon 6/ABS blends also increased with the introduction of POE‐g‐MA. Finally, dynamic mechanical analysis (DMA) experiments showed that adding POE‐g‐MA dramatically improved the impact strength of the blends at room temperature and low temperatures. Polym. Eng. Sci. 44:2340–2345, 2004. © 2004 Society of Plastics Engineers.  相似文献   

16.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

17.
The importance of alloys and blends has increased gradually in the polymer industry so that the plastics industry has moved toward complex systems. The main reasons for making polymer blends are the strengthening and the economic aspects of the resultant product. In this study, I attempted to improve compatibility in a polymer blend composed of two normally incompatible constituents, namely, acrylonitrile–butadiene–styrene (ABS) and polycarbonate (PC), through the addition of a compatibilizer. The compatibilizing agent, styrene–butadiene–styrene block copolymer (SBS), was added to the polymer blend in ratios of 1, 5, and 10% with a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by scanning electron microscopy and differential scanning calorimetry. Further, all three blends of ABS/PC/SBS were subjected to examination to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, Izod impact strength, hardness, heat deflection temperature, Vicat softening point, and melt flow index. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2521–2527, 2004  相似文献   

18.
Poly(styrene‐ethylene/butylene‐styrene) (SEBS) was used as a compatibilizer to improve the thermal and mechanical properties of recycled poly(ethylene terephthalate)/linear low‐density polyethylene (R‐PET/LLDPE) blends. The blends compatibilized with 0–20 wt % SEBS were prepared by low‐temperature solid‐state extrusion. The effect of SEBS content was investigated using scanning electron microscope, differential scanning calorimeter, dynamic mechanical analysis (DMA), and mechanical property testing. Morphology observation showed that the addition of 10 wt % SEBS led to the deformation of dispersed phase from spherical to fibrous structure, and microfibrils were formed at the interface between two phases in the compatibilized blends. Both differential scanning calorimeter and DMA results revealed that the blend with 20 wt % SEBS showed better compatibility between PET and LLDPE than other blends studied. The addition of 20 wt % of SEBS obviously improved the crystallizibility of PET as well as the modulus of the blends. DMA analysis also showed that the interaction between SEBS and two other components enhanced at high temperature above 130°C. The impact strength of the blend with 20 wt % SEBS increased of 93.2% with respect to the blend without SEBS, accompanied by only a 28.7% tensile strength decrease. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A series of acrylonitrile–butadiene–styrene (ABS) copolymer/poly(butylene terephthalate) (PBT)/acrylonitrile‐styrene‐glycidyl methacrylate (ASG) blends with various compositions were prepared and characterized in this study. When the fraction of ABS exceeds a critical value there is a rapid increase in notched impact strength of ABS/PBT blends no matter whether the compatibilizer ASG is present. By combining morphology observation and notched impact results, we found that the ductile‐brittle transition of the blends is closely related to the morphology inversion. The notched impact strength jumps from 15.9 to 33.4 kJ/m2 when phase inversion of ABS occurs at its fraction of 58 wt %. Accordingly, a possible toughening mechanism involved in the blends is proposed on the basis of a careful analysis of fracture energy, crack propagation behavior and fracture surface morphology. It is believed that the continuous ABS phase plays the critical role in toughening ABS/PBT blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46051.  相似文献   

20.
The compatibilization efficiency of two styrene‐butadiene‐styrene triblock copolymers with short (SB1) and long (SB2) styrene blocks was studied in polystyrene (PS)–polypropylene (PP) blends of composition 20, 50, and 80 wt % PS. The supramolecular structure of the blends was determined by small‐angle X‐ray scattering, and the morphology was studied with transmission electron microscopy and scanning electron microscopy. Structural changes in both the uncompatibilized and compatibilized blends were correlated with the values of tensile impact strength of these blends. Even though the compatibilization mechanisms were different in blends with SB1 and SB2, the addition of the block copolymers to the PS–PP 4/1 and PS–PP 1/4 blends led to similar structures and improved the mechanical properties in the same way. These block copolymers had a very slight effect on the impact strength in PS–PP 1/1 blends, exhibiting a nearly cocontinuous phase morphology. The strong migration of SB2 copolymers to the interface and of SB1 copolymers away from the interface were detected during the annealing of compatibilized PS–PP 4/1 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2431–2441, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号