首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonisothermal crystallization kinetics of poly(propylene) (PP), PP–organic‐montmorillonite (Org‐MMT) composite, and PP–PP‐grafted maleic anhydride (PP‐g‐MAH)–Org‐MMT nanocomposites were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny and a method developed by Mo well‐described the nonisothermal crystallization process of these samples. The difference in the exponent n between PP and composite (either PP–Org‐MMT or PP–PP‐g‐MAH–Org‐MMT) indicated that nonisothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half‐time, Zc; and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and composites, but the crystallization rate of composites was faster than that of PP at a given cooling rate. The method developed by Ozawa can also be applied to describe the nonisothermal crystallization process of PP, but did not describe that of composites. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PP–Org‐MMT was much greater than that of PP, but the activation energy of PP–PP‐g‐MAH–Org‐MMT was close to that of pure PP. Overall, the results indicate that the addition of Org‐MMT and PP‐g‐MAH may accelerate the overall nonisothermal crystallization process of PP. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3093–3099, 2003  相似文献   

2.
The nonisothermal crystallization kinetics of high‐density polyethylene (HDPE) and polyethylene (PE)/PE‐grafted maleic anhydride (PE‐g‐MAH)/organic‐montmorillonite (Org‐MMT) nanocomposite were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny, Ozawa analysis, and a method developed by Liu well described the nonisothermal crystallization process of these samples. The difference in the exponent n, m, and a between HDPE and the nanocomposite indicated that nucleation mechanism and dimension of spherulite growth of the nanocomposite were different from that of HDPE to some extent. The values of half‐time (t1/2), K(T), and F(T) showed that the crystallization rate increased with the increase of cooling rates for HDPE and composite, but the crystallization rate of composite was faster than that of HDPE at a given cooling rate. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. It was 223.7 kJ/mol for composite, which was much smaller than that for HDPE (304.6 kJ/mol). Overall, the results indicated that the addition of Org‐MMT and PE‐g‐MAH could accelerate the overall nonisothermal crystallization process of PE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3054–3059, 2004  相似文献   

3.
The non‐isothermal crystallization kinetics of pure polyamide 1010 (PA1010) and PA1010/montmorillonite nanocomposite (PA1010/MMT) was investigated by differential scanning calorimetry (DSC) at various cooling rates. The Avrami analysis modified by Jeziorny and a new method developed by Mo can describe the non‐isothermal crystallization process of PA1010 and PA1010/MMT nanocomposite very well. The difference in the value of exponent n between PA1010 and PA1010/MMT nanocomposite suggests that the nano‐size montmorillonite layers act as nucleation agents of PA1010. The values of half‐time of crystallization and crystallization rate coefficient (CRC) show that the crystallization rate of PA1010/MMT nanocomposite is faster than that of PA1010 at a given cooling rate. Polym. Eng. Sci. 44:861–867, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
The crystallization behavior of poly(vinylidene fluoride)/montmorillonite (PVDF/MMT) nanocomposite was investigated by using differential scanning calorimeter (DSC), polarizing optical microscope (POM), and X‐ray diffraction. The results showed that the crystallization behavior of PVDF was changed by adding MMT in PVDF matrix. The MMT layers in PVDF acted as effective nucleation agents. It is observed that the crystallization temperature of PVDF/MMT nanocomposite was higher than that of PVDF at various cooling rates. The value of half‐time of crystallization showed that the crystallization rate of PVDF/MMT nanocomposite was faster than that of PVDF at a given cooling rate. The addition of MMT hindered the growth of spherulite. Nonisothermal crystallization data was analyzed using Avrami, Ozawa, and Jeziorny method. The Jeziorny method successfully described the nonisothermal crystallization behaviors of PVDF/MMT nanocomposite. The MMT loading was favorable to produce the piezoelectric β phase in the PVDF matrix. The α phase coexisted with the β phase in the PVDF/MMT nanocomposite. For this polymorphic structure, a possible explanation was proposed based on the variable temperature X‐ray diffraction, DSC, and POM experiments. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
The isothermal crystallization kinetics of polypropylene/montmorillonite (PP/MMT) nanocomposites synthesized via intercalation polymerization were investigated by using differential scanning calorimeter and polarizing optical microscope (POM). The crystallinity of the nanocomposites decreased with the increase of the montmorillonite content, indicating that the MMT layers dispersed in the PP matrices confined the PP chains and hindered the crystallization of the PP chains. The POM photographs showed that the spherulites of the PP/MMT nanocomposites were greatly decreased in size as MMT was introduced. On the other hand, the crystallization rate increased dramatically with the increasing of MMT content. The interfacial free‐energy per unit area perpendicular to PP chains in PP/MMT nanocomposites decreased with increasing MMT content, suggesting that the MMT layers acted as heterogeneous nuclei in the nucleation of crystallization. The nucleus density increased with the increasing of MMT content, leading to a positive effect on the crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1978–1985, 2002  相似文献   

6.
In this study, cold and melt crystallization behaviors of amorphous poly(ethylene terephthalate) (PET)/clay nanocomposites were investigated. Two nanocomposite samples with the same amount of inorganic content were prepared by melt processing using natural montmorillonite (Na‐MMT) and organo‐modified montmorillonite (org‐MMT). Depending on the clay structure, clay dispersion into PET and crystallization behavior of the samples were studied using X‐ray diffraction and differential scanning calorimetry methods, respectively. Effects of clay structure and organic groups between clay layers in org‐MMT on the melt crystallization kinetics of the samples were analyzed with various kinetic models, namely, the Ozawa, Avrami modified by Jeziorny, and Liu‐Mo. Crystallization activation energies of the samples were also determined by the Kissinger and Augis–Bennett models. Exfoliated structures were obtained in the nanocomposite samples prepared with both the Na‐MMT and org‐MMT. From the kinetics study, it was found that the melt‐crystallization rate of the sample prepared with the Na‐MMT was higher than that prepared with the org‐MMT at a given cooling rate. It can be concluded that organic ammonium groups in the org‐MMT decelerate the crystallization rate of PET chains possibly by affecting the chain diffusion and folding. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
To study the effect of organophilic clay concentration on nonisothermal crystallization, poly(L ‐lactic acid) (PLLA)/montmorillonite (MMT) nanocomposites were prepared by mixing various amounts of commercial MMT (Cloisite® 30B) and PLLA. The effect of MMT content on melting behavior and crystal structure of nonisothermal crystallized PLLA/MMT nanocomposites was investigated by differential scanning calorimetry (DSC), small‐angle X‐ray scattering, and wide‐angle X‐ray diffraction (XRD) analyses. The study was focused on the effect of the filler concentration on thermal and structural properties of the nonisothermally crystallized nanocomposite PLLA/MMT. The results obtained have shown that at filler loadings higher than 3 wt %, intercalation of the clay is observed. At lower clay concentrations (1–3 wt %), exfoliation predominates. DSC and XRD analysis data show that the crystallinity of PLLA/MMT composites increases drastically at high clay loadings (5–9 wt %). In these nanocomposites, PLLA crystallizes nonisothermally in an orthorhombic crystal structure, assigned to the α form of PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
聚丙烯/蒙脱土纳米复合材料的制备与性能   总被引:67,自引:5,他引:62  
用烷基季铵盐对钠基蒙脱土进行有机化处理,使其成为有机蒙脱土。X射线衍射(XRD)表明有机阳离子已同钠离子发生离子交换作用,导致层间距扩大。用熔融插层法制备聚丙烯/蒙脱土纳米复合材料,测试了力学性能。通过XRD、DSC等手段研究了其结构与结晶行为,并与聚丙烯进行了对比。实验表明,通过熔融插层可使聚丙烯插层于蒙脱土片层之中,且所得聚合物的冲击强度有所提高。  相似文献   

9.
Poly(L ‐lactic acid)/o‐MMT nanocomposites, incorporating various amounts of organically modified montmorillonite (o‐MMT; 0–10 wt %), were prepared by solution intercalation. The montmorillonite (MMT) was organically modified with dilauryl dimethyl ammonium bromide (DDAB) by ion exchange. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) reveal that the o‐MMT was exfoliated in a poly(L ‐lactic acid), (PLLA) matrix. A series of the test specimens were prepared and subjected to isothermal crystallization at various temperatures (T1T5). The DSC plots revealed that the PLLA/o‐MMT nanocomposites that were prepared under nonisothermal conditions exhibited an obvious crystallization peak and recrystallization, but neat PLLA exhibited neither. The PLLA/o‐MMT nanocomposites (2–10 wt %) yielded two endothermic peaks only under isothermal conditions at low temperature (T1), and the intensity of Tm2 (the higher melting point) was proportional to the o‐MMT content (at around 171°C). The melting point of the test samples increased with the isothermal crystallization temperature. In the Avrami equation, the constant of the crystallization rate (k) was inversely proportional to the isothermal crystallization temperature and increased with the o‐MMT content, especially at low temperature (T1). The Avrami exponent (n) of the PLLA/o‐MMT nanocomposites (4–10 wt %) was 2.61–3.56 higher than that of neat PLLA, 2.10–2.56, revealing that crystallization occurred in three dimensions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The melt intercalation method was employed to prepare poly(butylene terephthalate) (PBT)/montmorillonite (MMT) nanocomposites, and the microstructures were characterized with X‐ray diffraction and transmission electron microscopy. Then, the nonisothermal crystallization behavior of the nanocomposites was studied with differential scanning calorimetry (DSC). The DSC results showed that the exothermic peaks for the nanocomposites distinctly shifted to lower temperatures at various cooling rates in comparison with that for pure PBT, and with increasing MMT content, the peak crystallization temperature of the PBT/MMT hybrids declined gradually. The nonisothermal crystallization kinetics were analyzed by the Avrami, Jeziorny, Ozawa, and Mo methods on the basis of the DSC data. The results revealed that very small amounts of clay (1 wt %) could accelerate the crystallization process, whereas higher clay loadings reduced the rate of crystallization. In addition, the activation energy for the transport of the macromolecular segments to the growing surface was determined by the Kissinger method. The results clearly indicated that the hybrids with small amounts of clay presented lower activation energy than PBT, whereas those with higher clay loadings showed higher activation energy. The MMT content and the crystallization conditions as well as the nature of the matrix itself affected the crystallization behavior of the hybrids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3257–3265, 2006  相似文献   

11.
The crystallization kinetics and melting behavior of nylon 10,10 in neat nylon 10,10 and in nylon 10,10–montmorillonite (MMT) nanocomposites were systematically investigated by differential scanning calorimetry. The crystallization kinetics results show that the addition of MMT facilitated the crystallization of nylon 10,10 as a heterophase nucleating agent; however, when the content of MMT was high, the physical hindrance of MMT layers to the motion of nylon 10,10 chains retarded the crystallization of nylon 10,10, which was also confirmed by polarized optical microscopy. However, both nylon 10,10 and nylon 10,10–MMT nanocomposites exhibited multiple melting behavior under isothermal and nonisothermal crystallization conditions. The temperature of the lower melting peak (peak I) was independent of MMT content and almost remained constant; however, the temperature of the highest melting peak (peak II) decreased with increasing MMT content due to the physical hindrance of MMT layers to the motion of nylon 10,10 chains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2181–2188, 2003  相似文献   

12.
Nucleation effects of two silicate nucleating agents, attapulgite and diatomite, on the crystallization of polyoxymethylene (POM), were studied by means of differential scanning calorimetry and polarized optical microscopy. The crystallization kinetics of POM with and without nucleating agents was analyzed by means of two isothermal crystallization kinetic equations through the crystallization thermograms. Compared with virgin POM, POM with nucleating agents of attapulgite and diatomite decreased the spherulitic size of POM and interfacial free energies per unit area perpendicular σe. The crystallization growth rate was accelerated because of nucleating agents as well. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 304–310, 2001  相似文献   

13.
Poly(butyl acrylate‐co‐methyl methacrylate)‐montmorillonite (MMT) waterborne nanocomposites were successfully synthesized by semibatch emulsion polymerization. The syntheses of the nanocomposites were performed in presence of sodium montmorillonite (Na‐MMT) and organically modified montmorillonite (O‐MMT). O‐MMT was used directly after the modification of Na‐MMT with dimethyl dioctadecyl ammonium chloride. Both Na‐MMT and O‐MMT were sonified to obtain nanocomposites with 47 wt % solids and 3 wt % Na‐MMT or O‐MMT content. Average particle sizes of Na‐MMT nanocomposites were measured as 110–150 nm while O‐MMT nanocomposites were measured as 200–350 nm. Both Na‐MMT and O‐MMT increased thermal, mechanical, and barrier properties (water vapor and oxygen permeability) of the pristine copolymer explicitly. X‐ray diffraction and transmission electron microscope studies show that exfoliated morphology was obtained. The gloss values of O‐MMT nanocomposites were found to be higher than that of the pristine copolymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42373.  相似文献   

14.
Differential scanning calorimeter (DSC) and X‐ray diffraction methods were used to investigate the isothermal and nonisothermal crystallization behavior and crystalline structure of syndiotactic polystyrene (sPS)/clay nanocomposites. The sPS/clay nanocomposites were prepared by mixing the sPS polymer solution with the organically modified montmorillonite. DSC isothermal results revealed that introducing 5 wt% of clay into the sPS structure causes strongly heterogeneous nucleation, inducing a change of the crystal growth process from mixed three‐dimensional and two‐dimensional crystal growth to two‐dimensional spherulitic growth. The activation energy of sPS drastically decreases with the presence of 0.5 wt% clay and then increases with increasing clay content. The result indicates that the addition of clay into sPS induces the heterogeneous nucleation (a lower ΔE) at lower clay content and then reduces the transportation ability of polymer chains during crystallization processes at higher clay content (a higher ΔE). We studied the non‐isothermal melt‐crystallization kinetics and melting behavior of sPS/clay nanocomposites at various cooling rates. The correlation among crystallization kinetics, melting behavior and crystalline structure of sPS/clay nanocomposites is discussed. Polym. Eng. Sci. 44:2288–2297, 2004. © 2004 Society of Plastics Engineers.  相似文献   

15.
Na‐montmorillonite/polyethyleneimine‐g‐poly(methyl methacrylate) (Na‐MMT/PEI‐g‐PMMA) nanocomposite latexes were prepared by soap‐free emulsion polymerization in the aqueous suspension of Na‐MMT. The exfoliated morphology of the nanocomposites was confirmed by XRD and TEM. With the aim of improving morphology and mechanical properties of natural rubber latex (NRL) films, the synthesized Na‐MMT/PEI‐g‐PMMA nanocomposites were mixed with NRL by latex compounding technology. The results of SEM and AFM analysis showed that the surface of NRL/Na‐MMT/PEI‐g‐PMMA film was smoother and denser than that of pristine NRL film while Na‐MMT was dispersed uniformly on the fracture surface of the modified films, which suggested the good compatibility between NRL and Na‐MMT/PEI‐g‐PMMA. The tensile strength of NRL/Na‐MMT/PEI‐g‐PMMA films was increased greatly by 85% with 10 phr Na‐MMT/PEI‐g‐PMMA when Na‐MMT content was 3 wt % and the elongation at break also increased from 930% to 1073% at the same time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43961.  相似文献   

16.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Vanillin (4‐hydroxy‐3‐methoxy benzaldehyde) and 5‐formylamino salicylic acid microbicides were reacted with polyoxyalkylene‐montmorillonite (D230–2000‐MMT) nanocomposites. The microstructure of these Schiff base nanocomposites was characterized by TEM and XRD. D230–2000‐MMT nanocomposites were prepared by an ion exchange process of sodium montmorillonite (Na‐MMT) and NH3 + groups in polyoxyalkylene amine hydrochloride with three different molecular masses of D230, D400, and D2000. Wide‐angle X‐ray diffraction confirms the intercalation of the polymer between the silicate layers. Electrostatic interaction between the positively charged NH3 + groups and the negatively charged surface of MMT was observed. The nanocomposites were tested for antimicrobial activity against the Gram‐negative bacteria (Escherichia coli NCIM 2065), Gram‐positive bacteria (Bacillus subtillus ATCC), and fungi (Candida albicans SC5314 and Cryptococcus neoformans). The D2000‐MMT/vanillin Schiff base nanocomposite strongly inhibited the growth of all microorganisms that can be used in different applications. The amount of loaded polymer and the structure of the nanocomposite play an important role in inhibiting the bacterial and fungal strains. It is found that the Schiff base nanocomposite affect the morphology, oxygen consumption, and the release of cytoplasmic constituents such as potassium (K+), sodium (Na+), and calcium (Ca2+) ions leading to death of the cells. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The polyethylene–clay nanocomposites were prepared by the in situ graft copolymerization of styrene containing twin‐benzyldimethyldioctadecylammonium bromine modified montmorillonite (TBDO‐MMT) in polyethylene with dicumyl peroxide (DCP) as an initiator in molten state. XRD and TEM analysis indicated that intercalated polyethylene/MMT nanocomposites are obtained. The mechanics performance, crystal behavior, thermal properties, and the effect of MMT contents on PE/MMT nanocomposite were also studied. As comparison, polyethylene/montmorillonite composites prepared by a simply melt compounding without styrene were studied as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4921–4927, 2006  相似文献   

19.
From in situ polycondensation, a poly(ethylene terephthalate)/Polyamide 6 copolymer/montmorillonite nanocomposite was prepared, after the treatment of montmorillonite (MMT) with a water soluble polymer. The resulting nanocomposites were characterized by X‐ray diffraction (XRD), differential scanning calorimeter (DSC), nuclear magnetic resonance (NMR), dynamic mechanical analysis (DMA), and transmission electron microscopy (TEM). The results of DSC, 1H NMR, and DMA proved that the nanocomposite synthesized was PET/PA6 copolymer/MMT nanocomposite, not the PET/PA6 blend/MMT nanocomposite. The results of XRD and TEM proved that the dispersion of MMT was improved observably after the introduction of PA6 molecular chain into PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2512–2517, 2006  相似文献   

20.
Three different loading of 3‐aminopropyltriethoxysilane (APS) was used to modify the Na‐montmorillonite via cation exchange technique. The Na‐MMT and silane‐treated montmorillonite (STMMT) were melt‐compounded with polycarbonate (PC) by using Haake Minilab machine. The PC nanocomposite samples were prepared by using Haake Minijet injection molding technique. The intercalation and exfoliation of the PC/MMT nanocomposites were characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the PC nanocomposites were investigated by using dynamic mechanical analyzer and thermogravimetry analyzer. XRD and TEM results revealed partial intercalation and exfoliation of STMMT in PC matrix. Increase of APS concentration significantly enhanced the storage modulus (E′) and improved the thermal stability of PC nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号