首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Flow and temperature distributions of sodium in a heat generating fuel pin bundle with helically wound spacer wire have been predicted from basic principles by solving the three-dimensional conservation equations of mass, momentum and energy, for a wide range of Reynolds number. Turbulence has been modeled using the k turbulence model. The geometry details of the bundle and heat flux from the fuel pin are similar to that of the Indian Prototype Fast Breeder Reactor (PFBR) that is currently under construction. The focus of the study is to assess the effect of transverse flow in promoting flow and temperature uniformity. It is seen that the ratio of maximum transverse velocity to the maximum axial velocity is nearly equal to the tangent of the rolling up angle of the spacer wire. Due to the wire wrap, the difference in bulk sodium temperature between the peripheral and central sub-channels is reduced to by a factor of 4 when compared to that without spacer wire. The film drop at the junction between wire and the pin is found to be only 70 °C. The predicted results are found to be in close agreement with that of the experimental results reported in literature. The present study considers a 7-pin bundle assembly of one helical pitch. The computational time and memory required for a 217 pin with 15 pitches assembly is ascertained to be 500 times that required for the current study. Hence, research activities have been directed towards developing a parallel CFD code and structural mesh generation software.  相似文献   

2.
Preliminary investigations of sodium flow and temperature distributions in heat generating fuel pin bundles with helical spacer wires have been carried out. Towards this, the 3D conservation equations of mass, momentum and energy have been solved using a commercial computational fluid dynamics (CFD) code. Turbulence has been accounted through the use of high Reynolds number version of standard k model, with uniform mesh density respecting wall function requirements. The geometric details of the bundle and the heat flux in are similar to that of the Indian Prototype Fast Breeder Reactor (PFBR) that is currently under construction. The mixing characteristics of the flow among the peripheral and central zones are compared for 7, 19 and 37 fuel pin bundles and the characteristics are extended to a 217 pin bundle. The friction factors of the pin bundles obtained from the present study is seen to agree well with the values derived from experimental correlations. It is found that the normalized outlet velocities in the peripheral and central zones are nearly equal to 1.1–0.9, respectively which is in good agreement with the published hydraulic experimental measurements of 1.1–0.85 for a 91 pin bundle. The axial velocity is the maximum in the peripheral zone where spacer wires are located and minimum in the zones which are diametrically opposite to the respective zone of maximum velocity. The sodium temperature is higher in the zones where the flow area and mass flow rates are less due to the presence of the spacer wires though the axial velocity is higher there. It is the minimum in the peripheral zones where the circumferential flow is larger. Based on the flow and temperature distributions obtained for 19 and 37 pin bundles, a preliminary extrapolation procedure has been established for estimating the temperatures of peripheral and central zones of 217 pin bundle.  相似文献   

3.
A comparison of critical heat flux (CHF) fuel bundles data with CHF data obtained in simple flow geometries was made. The base for the comparison was primary experimental data obtained in annular, circular, rectangular, triangular, and dumb-bell shaped channels cooled with water and R-134a. The investigated range of flow parameters (pressure, mass flux, and critical quality) in R-134a was chosen to be equivalent to modern nuclear reactor water flow conditions (p=7 and 10 MPa, G=350–5000 kg (m2 s)−1, xcr=−0.1–1). The proper scaling laws were applied to convert the data from water to R-134a equivalent conditions and vise versa. The effects of flow parameters (p, G, xcr) and the effects of geometric parameters (D, L) were evaluated during comparison. The comparison showed that no one simple flow geometry can be used for accurate and reliable bundle CHF prediction in wide range of flow parameters based on local (critical) conditions approach. The comparison also showed that the limiting critical quality phenomenon is unique characteristic for each flow geometry which depends on many factors: flow conditions (pressure and mass flux), geometrical parameters (diameter or surface curvature, gap size, etc.), flow obstructions (spacers, appendages, turbulizers, etc.) and others.  相似文献   

4.
The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). The essential results are:- Outside the spacer grids, the azimuthal temperature variations of the side and corner rods are approximately 10-fold those of rods in the central bundle zone.- The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points.- Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to adjacent cladding tubes.  相似文献   

5.
Computational Fluid Dynamics (CFD) investigations of a fast reactor fuel pin bundle wrapped with helical and straight spacer wires have been carried out and the advantages of using helical spacer wire have been assessed. The flow and temperature distributions in the fuel pin bundle are obtained by solving the statistically averaged 3-Dimensional conservation equations of mass, momentum and energy along with high Reynolds number k-ε turbulence model using a customized CFD code CFDEXPERT. It is seen that due to the helical wire-wrap spacer, the coolant sodium not only flows in axial direction in the fuel pin bundle but also in a transverse direction. This transverse flow enhances mixing of coolant among the sub channels and due to this, the friction factor and heat transfer coefficient of the coolant increase. Estimation of friction factor, Nusselt number, sodium temperature uniformity at the outlet of the bundle and clad hot spot factor which are measures of the extent of coolant mixing and non-homogeneity in heat transfer coefficient around fuel pin are paid critical attention. It is seen that the friction factor and Nusselt number are higher (by 25% and 15% respectively) for the helical wire wrap pin bundle compared to straight wire bundle. It is seen that for 217 fuel pin bundle the maximum clad temperature is 750 K for straight wire case and the same for helical wire is 720 K due to the presence of transverse flow. The maximum temperature occurs at the location of the gap between pin and wire. The ΔT between the bulk sodium in the central sub-channel and peripheral sub-channel is 30 K for straight wire and the same for helical wire is 18 K due to the presence of secondary transverse flow which makes the outlet temperature more uniform. The hotspot factor and the hot channel factors predicted by CFD simulation are 10% lower than that used in conventional safety analysis indicating the conservatism in the safety analysis.  相似文献   

6.
The aim of this paper is to provide an overview of the existing wire-wrapped fuel bundle friction factor/pressure drop correlations and to qualitatively evaluate which of the existing friction factor correlations are the best in retracing the results of a large set of the experimental data available on wire-wrapped fuel assemblies tested under different coolant conditions.  相似文献   

7.
An analytical method of evaluating the effects of non-uniform thermal expansion, hydrodynamic force acting on the periphery of a fuel pin and thermal and irradiation-induced creep and swelling on the three-dimensional deflection modes of a fuel pin bundle, as well as the deviation in engineering hot channel factor, are presented.The analysis consists mainly of deriving an expression for a flexibility matrix in terms of the general solution of a beam deflection equation with an arbitrary number of loads under either fuel pin to fuel pin or fuel pin to wrapper tube contact condition. The resulting matrix equation is solved for loads corresponding to all contact points, in terms of which the deflection modes are given.The drag coefficient for a wire-wrapped fuel pin in flowing fluid was investigated experimentally. Several cases of sample calculation show that for a prototype LMFBR fuel subassembly consisting of 169 fuel pins, the engineering hot channel factor accounting for the three-dimensional fuel pin bundle deflection is around 1.023–1.035 at zero irradiation and further increases to 1.045 after 500 day irradiation. The maximum load due to pin contact and the order of pin bundle deflection increase according to the irradiation level.  相似文献   

8.
ABSTRACT

In a fuel handling system of sodium-cooled fast reactors (SFRs), it is necessary to remove the sodium remaining on spent fuel assemblies (FAs) before storing them in a spent fuel water pool (SFP). A next-generation SFR in Japan has adopted an advanced dry-cleaning system that consists of argon gas blowing to remove the metallic residual sodium on the FA, which increases economic competitiveness and reduces waste products thanks to a waterless process. In this R&D work, the performance of the dry cleaning process has been investigated.

This paper describes experimental and analytical studies focusing on the amount of residual sodium remaining on a fuel pin bundle before and after the argon gas blowing process. The experiments were conducted using a sodium test loop and a short (approximately 1 m) specimen consisting of a 7-pin bundle. The effects of the blowing gas velocity and the blowing time were quantitatively analyzed in the experiments. The blowing gas velocity was varied from 3.9 to 31.3 m/s, and 113 data-points of the residual sodium were collected during the experiment. On the basis of these experimental results, the residual sodium quantification method for the fuel pin bundle was constructed.  相似文献   

9.
Thermal characteristics of the reference DUPIC fuel has been studied for its feasibility of loading in the CANDU reactor. Half of the DUPIC fuel bundle has been modeled for a subchannel analysis of the ASSERT-IV Code which was developed by AECL. From the calculated mixture enthalpy, equilibrium quality and void fraction distributions in subchannels of the fuel bundle, it is found that the gravity effect may be pronounced in the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. The asymmetric distribution of the coolant in the fuel bundle is known to be undesirable since the minimum critical heat flux ratio can be reduced for a given value of the channel flow rate. On the other hand, the central region of the DUPIC fuel bundle has been found to be cooled more efficiently than that of the standard fuel bundle in the subcooled and the local boiling regimes due to the fuel geometry and the fuel element power changes. Based upon the subchannel modeling used in this study, the location of minimum critical heat flux ratio in the DUPIC fuel bundle turned out to be very similar to that of the standard fuel when the equivalent values of channel power and channel flow rate are used. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the subchannel-wise mixture enthalpy and void fraction peaks are located in the peripheral region of the DUPIC fuel bundle while those are located in the central region of the standard CANDU fuel bundle. Reduced values of the channel flow rates were used to study the effect of channel flow rate variation. The effect of the channel flow reduction on different thermal-hydraulic parameters have been discussed. This study shows that the subchannel analysis for the horizontal flow is very informative in developing new fuel for the CANDU reactor.  相似文献   

10.
11.
《Annals of Nuclear Energy》2001,28(17):1683-1695
The main objective of the present study is to perform a comparative study of five existing correlations that have been selected and identify the best performing correlations in the subchannel pressure drop analysis of a wire-wrapped fuel assembly by means of directly comparing with experimental data obtained in the present work. For this purpose, a series of water experiments have been performed using a helical wire-wrapped 19-pin fuel assembly for various combinations of test parameters. Four different test sections that have different pitch to rod diameter ratios (P/D) and wire lead length to rod diameter ratios (H/D) have been fabricated. A series of pressure drop measurements were made to obtain friction factors for these four test sections. A total of 293 data were obtained and the present along with existing data are used in the present comparative study of existing correlations. The results of this study show that both the original and the simplified Cheng and Todreas correlations give the best agreement with experimental data for all flow regions.  相似文献   

12.
This paper presents use of Reynolds-averaged Navier-Stokes (RANS) based turbulence model for single-phase CFD analysis of flow in pressurized water reactor (PWR) assemblies. An open source code called OpenFoam was used for computational fluid dynamics (CFD) study using computational meshes generated using Shari Harpoon. The PWR assembly design used in this analysis represents a 5 × 5 pin design including structural grid equipped with mixing vanes. The design specifications used in this study were obtained from the experimental setup at Texas A&M University and the results obtained are used to validate the CFD software, algorithm, and the turbulence model used in this analysis.  相似文献   

13.
Computational fluid dynamics (CFD) is used to simulate highly turbulent coolant flows surrounding a simulation CANDU® fuel bundle structure inside a flow channel. Three CFD methods are used: large eddy simulation (LES), detached eddy simulation (DES), and Reynolds stress model (RSM). The outcome of the simulations is compared with the experimental pressure data measured using an in-water microphone and a miniature pressure transducer placed at various locations in the vicinity of the bundle structure. Among all the three methods employed in developing computational models, LES provides the most accurate results for turbulent pressures.  相似文献   

14.
The computer program STGAP has been developed to estimate pin gaps in a fuel assembly for FUGEN. The program optionally computes the probable distribution of the pin gap between any adjacent pair of fuel pins, either at a desired location in an assembly or longitudinally averaged over the total effective length of a pin, based on the measured manufacturing and assembling tolerances in geometrical dimensions and mechanical properties of all the independent elements composing a fuel assembly. It also correlates the computed fuel gap distribution with the minimum critical heat flux ratio in the corresponding local subchannel. Sample calculations were performed for the probable distributions of the pin gaps between pairs of adjacent fuel pins in the outermost layer of a FUGEN fuel assembly using the program and satisfactory agreement was obtained with the corresponding measured distributions.  相似文献   

15.
A very fast integral numerical computer code for the modelling of transient and steady-state thermal and mechanical behaviour of Zircaloy-clad UO2 fuel pins in water reactors has been developed. The computational technique which determines the stress and deformation state of the fuel pin is based upon an extremely efficient finite difference scheme, i.e. the non-linear terms in the constitutive equations which produce a non-linear system of equations have been linearised using a Taylor expansion technique coupled with a very sophisticated error minimization algorithm and then solved with great accuracy. An improved numerical method has also been developed for the fast and efficient solution of the transient heat conduction equation. In this way a very stable and economical one-dimensional code (with appropriate provisions made for its conversion to a quasi two-dimensional code) has been obtained. The physical processes included are thermo-elastic deformation, thermal and irradiation creep, plasticity, fission gas swelling and release, formation of cracks in the fuel, hot pressing, densification, pore migration and dish or central void filling. Here the mathematical basis of SAMURA is presented along with some preliminary calculations and benchmarkings. It is concluded that SAMURA is quite fast indeed, converges to accurate results and within the margins of the error criterion chosen has very reasonable computer demands. It is also stable under all conditions tested.  相似文献   

16.
This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.  相似文献   

17.
Large eddy simulation (LES) of turbulent flow in a bare rod bundle was performed, and a new concept about the flow structure that enhances heat transport between subchannels was proposed. To investigate the geometrical effect, the LES was performed for three different values of rod diameter over pitch ratio (D/P = 0.7, 0.8, 0.9). The computational domain containing 4 subchannels was large enough to capture large-scale structures wide across subchannels. Lateral flow obtained was unconfined in a subchannel, and some flows indicated a pulsation through the rod gap between subchannels. The gap flow became strong as D/P increased, as existing experimental studies had reported. Turbulence intensity profile in the rod gap suggested that the pulsation was caused by the turbulence energy transferred from the main flow to the wall-tangential direction. This implied that the flow pulsation was an unsteady mode of the secondary flow and arose from the same geometrical effect of turbulence. This implication was supported by the analysis results: two-points correlation functions of fluctuating velocities indicated two length-scales, P-D and D, respectively of cross-sectional and longitudinal motions; turbulence stress in the cross-sectional mean flow contained a non-potential component, which represented energy injection through the unsteady longitudinal fluid motion.  相似文献   

18.
19.
The impact of gas in sodium flow on the temperature variation in an LMFBR rod bundle was studied in two types of experiments: (1) The gas fraction of the subchannels as well as the gas bubble spectra across the outlet of an unheated 61-rod bundle with wire spacers were measured in water/air flow. The distributions of the gas fractions at the inlet of the bundle were performed under uniform and non-uniform conditions. The results show that the distribution of the averaged gas fractions between the individual subchannels at the outlet of the bundle was almost the same as the distribution at the inlet. The measured bubble spectra show a dependency existing between the bubble frequencies, the bubble lengths, and the gas fraction in a subchannel. (2) A model for computing the transient temperature distributions within a heated rod was supported by experiments performed in a sodium/argon flow. For slug flow conditions a comparison indicates that the measured variations of wall temperatures can be well interpreted as being functions of the bubble contact time, rod power, and gas fraction in the flow.  相似文献   

20.
The flow field was investigated in subchannels of VVER-440 pressurized water cooled reactors’ fuel assemblies (triangular lattice, P/D = 1.35). Impacts of the mesh resolution and turbulence model were studied in order to obtain guidelines for CFD calculations of VVER-440 rod bundles. Results were compared to measurement data published by Trupp and Azad in 1975. The study pointed out that RANS method with BSL Reynolds stress model using a sufficient fine grid can provide an accurate prediction for the turbulence quantities in this lattice. Applying the experiences of the sensitivity study thermal hydraulic processes were investigated in VVER-440 rod bundle sections. Based on the examinations the spacer grids have important effects on the cross flows, axial velocity and outlet temperature distribution of subchannels therefore they have to be modeled satisfactorily in CFD calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号