首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Future mobile ad hoc networks are expected to support voice traffic. The requirement for small delay and jitter of voice traffic poses a significant challenge for medium access control (MAC) in such networks. User mobility presents unique difficulties in this context due to the associated dynamic path attenuation. In this paper, a MAC scheme for mobile ad hoc networks supporting voice traffic is proposed. With the aid of a low‐power probe prior to DATA transmissions, resource reservation is achieved in a distributed manner, thus leading to small packet transmission delay and jitter. The proposed scheme can automatically adapt to dynamic path attenuation in a mobile environment. Statistical multiplexing of on/off voice traffic can also be achieved by partial resource reservation for off voice flows. Simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Mobility is gaining a tremendous interest among Internet users and wireless access networks are increasingly being installed to enable mobile usage. Internet mobility requires solutions to move between access networks with maintained network connectivity. Seamless mobility in turn means that the experience of using a service is unaffected while being mobile. Communication in next generation networks will use multiple access technologies, creating a heterogeneous network environment. Further, roaming between network service providers may take place. To enable mobile nodes to move between access networks within as well as between network service providers with minimal disruption, nodes should be able to maintain multiple active network connections. With the usage of multihomed nodes, seamless mobility can be achieved in already installed infrastructures, not providing mobility support. Mobility in heterogeneous access networks also requires network selections that scale for services. In this article we propose an architecture where application service providers and network service providers define service levels to be used by a mobile node and its user. The user selects a service and the service level from an application service provider. When performing access network selection, information received as part of an application service level will be used to find a network that supports the service required. The performance of available access networks will be monitored and considered when making the decision. Our proposed architecture provides solutions to move flows between interfaces in real-time based on network performance, quality of service signalling to correspondent nodes, and cancellation of flows to give way for more important traffic.  相似文献   

3.
As the volume of mobile traffic consisting of video, voice, and data is rapidly expanding, a challenge remains with the mobile transport network, which must deliver data traffic to mobile devices without degrading the service quality. Since every Internet service holds its own service quality requirements, the flow-aware traffic management in fine granularity has been widely investigated to guarantee Quality of Service (QoS) in the IP networks. However, the mobile flow-aware management has not been sufficiently developed yet because of the inherent constraints of flow routing in the mobile networks regarding flow-aware mobility and QoS support. In this paper, we propose a flow-aware mobility and QoS support scheme called mobile flow-aware network (MFAN) for IP-based wireless mobile networks. The proposed scheme consists of dynamic handoff mechanisms based on QoS requirements per flow to reduce the processing overhead of the flow router while ensuring QoS guarantee to mobile flows. The performance analyses of the proposed scheme demonstrate that MFAN successfully supports the mobile flow traffic delivery while satisfying the QoS requirement of flows in the wireless mobile IP networks.  相似文献   

4.
This paper studies the effects of user mobility and handoff path rerouting on the traffic distributions in a mobile network environment. In mobile ATM networks, extra traffic load may be added to network links due to user mobility and handoff path rerouting. This requires higher network link capacity and possible topology reengineering in order to support the same quality of service (QoS) for mobile services. To capture the dynamic variations in mobile ATM networks, we propose to use a flow model. The model represents the mobile-generated traffic as a set of stochastic flows over a set of origin-destination (OD) pairs. The user mobility is defined by transfer probabilities of the flows and the handoff path rerouting algorithm is modeled by a transformation between the routing functions for traffic flows. The analysis shows that user mobility may cause temporal variations as well as smoothing effects on the network traffic. Using the flow network model, typical handoff path rerouting algorithms are evaluated through both analytical and experimental approaches. The evaluation methodology can be used for either redesigning the network topology for a given path rerouting algorithm or selecting a path rerouting algorithm for a given network topology under a specific mobile service scenario  相似文献   

5.
This paper provides a novel design concept for advanced mobile multi interface terminals with radio network aggregation capability and enhanced quality of service (QoS) provisioning for multimedia services (voice, video and data) in heterogeneous wireless and mobile networks. A new module is established which provides the best QoS and lowest cost for any given multimedia service by using simultaneously all available wireless and mobile access networks for a given traffic flow. This novel adaptive QoS module with adaptive QoS routing algorithm is called advanced QoS routing algorithm (AQoSRA), which is defined independently from any existing and future radio access technology. The performance of our proposal is evaluated using simulations and analysis with multi-interface mobile stations with AQoSRA within, carrying multimedia traffic in heterogeneous mobile and wireless environment with coexistence of multiple Radio Access Technologies, such as 3G, 4G as well as future 5G radio access networks. The analysis of the proposed framework for radio networks aggregation in advanced mobile terminals has shown overall better performances regarding the achievable throughput and multimedia access probability in heterogeneous wireless and mobile environment.  相似文献   

6.
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.  相似文献   

7.
In this article we focus on the transport and switching part of third-generation mobile access networks and outline some important aspects of applying ATM in these networks. In particular, we argue that in order for the mobile access network to support low-bit-rate delay-sensitive traffic consisting of short packets, the standardization of a new ATM adaptation layer, AAL2, and associated signaling protocol has been necessary. The AAL2 protocol has been designed to support low-bit-rate delay-sensitive services (typically compressed voice) where other adaptation layers fail to deliver the required QoS and maintain efficient resource utilization at the same time. Furthermore, in order to provide mobility and soft handover support in W-CDMA-based mobile networks such as UMTS or IMT-2000, there is also a strong demand for fast connection establishment and release. Therefore, when designing ATM-based cellular access networks some specific architectural and traffic management issues need to be addressed  相似文献   

8.
提出一个以信息调度为基础的分布式的QoS(DQBI)体系结构。该结构可以在移动Ad Hoc网络中为实时传输和尽力而为传输提供QoS保证。DQBI模型改进了整个系统信息端到端的延迟性能,并且通过使用请求允许接入控制和拥塞控制机制来处理网络的拥塞。最后,仿真比较了MQRD结构和DQBI结构,发现DQBI结构可以更好地确保实时流和尽力而为流实现它们期望的服务水平。  相似文献   

9.
Quality-of-service (QoS) signaling protocols for mobile ad hoc networks (MANETs) are highly vulnerable to attacks. In particular, a class of denial-of-service (DoS) attacks can severely cripple network performance with relatively little effort expended by the attacker. A distributed QoS signaling protocol that is resistant to a class of DoS attacks on signaling is proposed. The signaling protocol provides QoS for real-time traffic and employs mechanisms at the medium access control (MAC) layer, which serve to avoid potential attacks on network resource usage. The key MAC layer mechanisms that provide support for the QoS signaling scheme include sensing of available bandwidth, traffic policing, and rate monitoring, all of which are performed in a distributed manner by the mobile nodes. The proposed signaling scheme achieves a compromise between signaling protocols that require the maintenance of per-flow state and those that are completely stateless. The signaling scheme scales gracefully in terms of the number of nodes and/or traffic flows in the MANET. The authors analyze the security properties of the protocol and present simulation results to demonstrate its resistance to DoS attacks.  相似文献   

10.
郭庆  余海  房利国 《通信技术》2020,(3):711-717
针对处理机密信息的终端用户设备通过移动通信网安全接入相同保密等级的政府机构内部网络或政府合作企业内部网络的问题,美国国家安全局基于商用密码产品和安全产品给出了双层加密和持续监测的移动接入整体解决方案。解决方案提出了持续监测框架、监测点位置、监测数据收集方法,以及监测点选择、告警触发条件等实施要求。对各监测点网络流量特征、安全事件数据汇集手段、系统动态安全模型的分析,可为基于移动通信网等开放网络的虚拟私有专网整体监测方案设计提供参考。  相似文献   

11.
12.
Perceptive admission control for wireless network quality of service   总被引:1,自引:0,他引:1  
Ian D.  Elizabeth M.  Joseph P.   《Ad hoc Networks》2007,5(7):1129-1148
As wireless networks become more widely used, there is a growing need to support advanced services, such as multimedia streaming and voice over IP. Traditional approaches to guarantee quality of service (QoS) work well only with predictable channel and network access. In wireless mobile networks, where conditions dynamically change as nodes move about the network, a stateless, high level approach is required. Since shared wireless resources are easily over-utilized, the load in the network must be controlled so that an acceptable QoS for real-time applications can be maintained. If minimum real-time requirements are not met, these unusable packets waste scarce bandwidth and hinder other traffic, compounding the problem. To enable high QoS for all admitted traffic, we propose the Perceptive Admission Control (PAC) protocol. PAC monitors the wireless channel and dynamically adapts admission control decisions to enable high network utilization while preventing congestion. Through discussion, simulations and testbed experiments, we demonstrate that PAC ensures low packet loss and delay for all admitted flows.  相似文献   

13.
A random access protocol with multi-packet reception (MPR) capability for infrastructure-less wireless autonomic networks is introduced and analyzed. In these networks mobile nodes may communicate with each other directly without a central entity (base station), where each mobile node either will be in a transmitting mode or in a receiving mode or in an idle mode. The throughput per node and the packet retransmission probability depend exclusively on the MPR capability and the ratio of the transmission probability and the receiving probability of each mobile node. For a given ratio of the transmission probability and the receiving probability of each mobile node, throughput-delay performance increases with the increase of MPR capability. In the proposed infrastructure-less networks, mobile nodes can control the network traffic very precisely by controlling the three parameters. These three parameters are transmission probability, receiving probability and idle mode probability of each mobile node. Since each mobile node can control the network traffic very precisely to obtain the maximum throughput, the network is autonomic, i.e., self-optimizing. The optimum transmission probability of each mobile node to obtain the maximum throughput is evaluated. The throughput utility increases with the increase of MPR capability. On the other hand, the cost per mobile node also increases with the increase of MPR capability. Therefore the MPR capability should be optimized to provide reasonable trade-off between the throughput per node and the cost per mobile node. The results of this study may be used for a system design of an infrastructure-less contention-based multiple access schemes with MPR capability.  相似文献   

14.
Quality-of-service (QoS) routing is the key to support multimedia services in wireless multihop networks. The goal of QoS routing is to find satisfactory paths that support the end-to-end QoS requirements of the multimedia flows. Previous work has demonstrated a framework for supporting QoS routing in mobile ad hoc networks, where two novel mechanisms for dynamic channel assignment, called the minimum-blocking and bandwidth-reallocation channel-assignment (MBCA/BRCA) algorithms, were proposed. MBCA/BRCA are on-demand channel assignment methods that reactively provide a differentiated service treatment to multimedia traffic flows at the link level using novel techniques for end-to-end path QoS maximization. Efficient QoS routing is then accomplished by giving the routing mechanism access to QoS information, thus coupling the coarse grain (routing) and fine grain (congestion control) resource allocation. In this paper, the specifics and individual mechanisms of the MBCA/BRCA algorithms are presented, whereas their effectiveness and the manner in which they interact in order to contribute to the overall protocol performance is examined and documented. The system performance is studied through simulations experiments under various QoS traffic flows and network scenarios. The protocol's behavior and the changes introduced by variations on some of the mechanisms that make up the protocol is further investigated. As demonstrated, the MBCA/BRCA methods are able to increase system's aggregate traffic by 2.8 Kb/s, on average, comparing to a non-MBCA/BRCA dynamic channel-allocation scheme.  相似文献   

15.
移动Ad Hoc网络中一种分布式QoS保证的多址接入协议   总被引:1,自引:0,他引:1       下载免费PDF全文
刘凯  王大鹏 《电子学报》2007,35(11):2067-2071
基于随机竞争和冲突解决的思想,本文为多跳移动Ad Hoc网络提出了一种分布式服务质量(QoS)保证的多址接入(QMA)协议.该协议中,节点在发送业务分组前利用预报突发进行竞争接入,节点根据业务分组时延情况和最早失效优先原则确定预报突发的长度,所发预报突发能持续到最后的节点优先获得接入.同时,具有实时业务的节点可以按照其优先级在更早的竞争微时隙中开始发送预报突发,而有非实时业务的节点只能在前面竞争微时隙空闲的情况下,才能在后面的微时隙开始发送预报突发,因此发送实时业务的节点可以比发送非实时业务的节点更优先接入信道,从而在移动Ad Hoc网络中实现了对多媒体业务的QoS保证.最后利用OPNET仿真评估了QMA协议的多址性能,并与IEEE 802.11e协议的性能做了比较,结果表明QMA协议可以提供较高的吞吐量和较低的实时业务时延.  相似文献   

16.
文章认为由于智能终端和移动互联网的发展给移动网络带来巨大压力,因此为移动用户提供无线局域网(WLAN)接入成为移动网络数据业务分流的重要手段。基于WLAN分流技术,文章分析了用于解决WLAN和移动网络业务连续性问题的新技术,如全球移动通信系统增强数据传输速率技术无线接入网络/陆地无线接入网/通用移动通信系统陆地无线接入网/陆地无线接入网/增强通用移动通信系统陆地无线接入网(GERAN/UTRAN/E-UTRAN)与WLAN网络之间的业务连续性技术、接入网络发现和选择功能和非无缝的WLAN分流技术。  相似文献   

17.
In recent years, mobile access networks operating at millimeter wavelengths have received a great deal of attention, as they promise previously unattainably high mobile data rates. At these frequencies, mobile access links are expected to use highly directional beamforming antennas, which are also well suited to backhaul links. Therefore, access points can efficiently act as self-backhauled relays by using the same spectrum, circuits and antennas for mobile access and backhaul links, thus forming a multi-hop in-band backhaul network. The contributions of our paper are extensive simulations to investigate user level performance in such multi-hop networks. We specifically take into account the momentary data traffic of every link in order to calculate the interference. Results quantify the detrimental effect of interference on user level performance. Furthermore, the potential benefit of using the combination of in-band and dedicated backhaul links is evaluated. Additionally, this paper investigates the user level effects of the sudden loss of a link in the backhaul mesh network, and underlines the importance of effective rerouting algorithms. The feasibility of the in-band concept is demonstrated, and we can confirm that the user level experience will surpass the performance provided by previous generation mobile networks.  相似文献   

18.
We consider a scenario where devices with multiple networking capabilities access networks with heterogeneous characteristics. In such a setting, we address the problem of efficient utilization of multiple access networks by devices via optimal assignment of traffic flows with given utilities to different networks. We develop and analyze a device middleware functionality that monitors network characteristics and employs a Markov Decision Process (MDP) based control scheme that in conjunction with stochastic characterization of the available bit rate and delay of the networks generates an optimal policy for allocation of flows to different networks. The optimal policy maximizes, under available bit rate and delay constraints on the access networks, a discounted reward which is a function of the flow utilities. The flow assignment policy is periodically updated and is consulted by the flows to dynamically perform network selection during their lifetimes. We perform measurement tests to collect traces of available bit rate and delay characteristics on Ethernet and WLAN networks on a work day in a corporate work environment. We implement our flow assignment framework in ns-2 and simulate the system performance for a set of elastic video-like flows using the collected traces. We demonstrate that the MDP based flow assignment policy leads to significant enhancement in the QoS provisioning (higher rate allocation, lower packet delays and packet loss rates) for the flows and better access network utilization, as compared to policies that allocate flows to different networks using greedy approaches or heuristics like average available bit rate on the networks.  相似文献   

19.
With the advent of IP technologies and the tremendous growth in data traffic, the wireless industry is evolving its core networks toward IP technology. Enabling wireless Internet access is one of the upcoming challenges for mobile radio network operators. The General Packet Radio Service is the packet-switched extension of GSM and was developed to facilitate access to IP-based services better than existing circuit-switched services provided by GSM. We illustrate how a visited mobile subscriber on a GPRS/UMTS network can access his/her home network via the gateway GPRS support node (GGSN). We also propose some implementation ideas on wireless Internet access for a remote mobile subscriber based on a GPRS/UMTS network  相似文献   

20.
Support for host mobility an essential and necessary feature for roaming users who connect to wireless networks via access points. Access points may have different capabilities, be connected to different networks and be installed by different providers. A mobile host will discover multiple access points in this environment. In such an environment, a mobile host should be able to use the best available connection to communicate with a correspondent host and perhaps use multiple connections for different hosts. In areas with wireless local area network access, pockets with limited or no coverage could exist. Such restricted connectivity could be compensated by neighbor hosts who form an ad hoc network and relay packets until they reach an access point. This paper describes and discusses a proposed solution towards enabling and supporting connectivity in wireless networks. In the proposed solution the network layer software will evaluate and decide which wireless network connections to use. A Running Variance Metric (RVM) and a Relative Network Load(RNL) are used to measure the traffic load of access points in wireless access networks. RVM and RNL can be efficiently used for both infrastructure networks and ad hoc networks. Multihomed Mobile IP (M-MIP) is an extension of Mobile IP that enables mobile hosts to use multiple care-of addresses simultaneously. The extension enhances network connectivity by enabling the mobile host, the home agent and correspondent hosts to evaluate and select the best connection. A proposed gateway architecture using M-MIP that integrates wired IP networks with ad hoc networks is described. The M-MIP and gateway architecture using the RVM and RNL metrics have been validated with simulation studies and results are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号