首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采取只加热钛层的方法实现协调变形轧制制备钛/铝复合板,通过剪切实验、金相显微镜、扫描电子显微镜,研究压下率、钛层加热温度对钛/铝复合板的厚比分配、剪切强度和界面的影响。结果表明:随着钛层温度的升高和总轧制压下率的增大,钛铝复合板的钛层和铝层变形率差值逐渐减小;当温度为800℃,轧制压下率为50%时,铝层和钛层的变形率分别达到了51.4%和48.6%,钛铝复合板变形趋于协调。钛与铝的结合界面剪切强度达到107.5 MPa,基本接近铝基体的剪切强度。加热过程中钛板表面会产生氧化层,但是在较大轧制压下率下,钛的氧化层会撕裂,金属铝挤入裂缝与新鲜钛金属接触,在强大压力和高温作用下,钛、铝元素相互扩散从而达到牢固的冶金结合。  相似文献   

2.
镁/铝叠层复合板作为一种新型的叠层复合材料,利用爆炸+轧制的工艺方法生产镁/铝叠层复合板能够充分发挥镁合金和铝合金的性能优势。应用ABAQUS有限元分析软件对镁/铝爆炸复合板在不同热轧工艺下的热轧过程进行模拟,分析了轧制过程中温度、压下率对复合板宽展、等效应变及翘曲程度的影响。模拟结果表明:复合板宽展随温度的升高而略微降低,随轧制压下率的增大而增大;轧制过程中金属主要沿轧制方向进行流动,最大宽展率为3.5%;从复合板头部到尾部,节点的等效应力先升高、再维持水平、最后下降,界面最大等效应变随压下率的增加由0.164增大至0.523;轧制过程中,界面处金属温度高于两侧金属温度,轧制结束后温度由350℃降至237℃;轧制温度为350℃、轧制压下率为30%时,轧制效果最好。  相似文献   

3.
采用ANSYS/LS-DYNA软件建立了铜/铝/铜复合板异步轧制成形弹塑性有限元模型,将有限元模型仿真结果同实际轧制实验结果进行对比,证明有限元模型的准确性。通过对异步轧制变形区进行分析和研究发现,在相同条件下,与同步轧制相比,异步轧制可以有效地减小轧制正应力,并增大后滑区摩擦应力;异步轧制搓轧区可以促进复合板结合界面的金属流动,在其他轧制条件相同的情况下,压下率越大,搓轧区越小,异步速比越大,搓轧区越大;靠近快速辊一侧结合界面铜板的等效应变要大于靠近慢速辊一侧结合界面铜板的等效应变,中间铝板的等效应变大于两侧铜板。随着异步速比的增大,复合板结合界面上两种金属的等效应变的差距逐渐缩小,变形将会更加协调,有利于增强复合板的结合强度。整体研究对铜铝复合板制备工艺的优化提供了理论依据。  相似文献   

4.
研究了冷轧铜/铝复合板横向界面结合强度,运用有限元方法模拟了铜/铝复合板结合界面处中性面位置的法向应力和金属的横向流动速度,通过单道次冷轧制备了55%~75%压下率的铜/铝复合板,研究了复合板的结合强度、界面和剥离界面。结果表明,在同一压下率下,从复合板边部到中部,结合界面处中性面位置的法向应力显著增大,金属的横向流动速度逐渐减小;结合界面处中性面位置的法向应力和边部金属的横向流动速度随压下率增大而逐渐增大;55%~75%压下率时,中部界面平直、光滑,边部界面出现缩孔和裂缝。冷轧铜/铝复合板中部结合强度比边部高。  相似文献   

5.
电子封装用Cu/Mo/Cu复合材料的工艺研究   总被引:1,自引:0,他引:1  
研究了浸涂助复剂(铝基合金)和室温轧制工艺对Cu/Mo/Cu复合界面结合强度的影响,简述了Cu/Mo/Cu复合板室温轧制成形工艺过程,详细分析了表面和界面清理、初道次轧制临界变形率及热处理工艺等因素对复合板结合强度的影响。实验结果得出,钼板浸涂Al—Mn—Zn—Sn合金助复剂后的热处理温度为800~850℃;初道次轧制变形率为45%最佳;复合轧制后合适的退火工艺为450℃,保温60min。  相似文献   

6.
表面机械处理及扩散退火对复合板性能的影响   总被引:1,自引:0,他引:1  
通过对轧制前表面进行不同处理和轧制后进行不同热处理工艺生产出的不锈钢/铝/不锈钢三层复合板材试样进行微观形貌观测和拉伸试验,探讨了表面处理及热处理工艺对其复合界面结合强度的影响.结果表明,经表面处理轧制后,在400 ℃×1.5 h的扩散退火工艺条件下,复合板综合性能最佳.  相似文献   

7.
研究了热轧工艺对碳钢/不锈钢复合板中碳钢界面组织的演变规律。结果表明,随压下率增加,单道次轧制试样的碳钢基体铁素体内部析出的碳化物增加,且具有一定方向性;2道次轧制试样铁素体内部析出的碳化物颗粒消失。3层复合板中不锈钢厚度比较大,抗拉强度与4层试样相近,4层试样伸长率增加较为明显。  相似文献   

8.
《锻压技术》2021,46(7):199-206,213
采用温轧工艺制备22MnB5高强钢与201不锈钢的复合板,通过扫描电镜(SEM)、X射线衍射、拉伸实验等方法研究了复合板的界面组织及力学性能。结果表明,温轧工艺制备的不锈钢复合板从基层到覆层之间依次为脱碳层、结合界面、渗碳层3种组织形貌。脱碳层的厚度随着压下率的增加而增大,覆层的奥氏体组织发生了形变诱发马氏体相变,热处理后的基层组织为板条马氏体。复合板界面处出现元素的相互扩散,且C、Cr、Mn元素的扩散能力较强,热处理后扩散层厚度增加。随着压下率的逐渐增加,复合板的抗拉强度增加、伸长率降低。热处理后复合板的抗拉强度达到1160 MPa以上,伸长率有所提高。  相似文献   

9.
研究了热轧工艺制度和Q235A普碳钢/304不锈钢复合板结合界面厚度的关系。结果表明,大于30%以上的大压下率试样剪切强度符合国标要求;大压下率轧制试样结合界面间元素扩散程度增大,界面厚度增加,复合板的结合强度也增强。  相似文献   

10.
铜/铝/铜轧制复合板的退火工艺研究   总被引:6,自引:1,他引:5  
研究了低温长时间和高温短时两种退火工艺对铜/铝/铜轧制复合板的成型性能及界面结合强度的影响,讨论了退火强化现象没有出现的原因。结果表明,退火处理不能提高铜/铝/铜轧制复合板的结合强度,只能改善复合板的成型性能。铜/铝轧制复合板宜采用高温短时退火制度,退火温度选择580~625℃,时间控制在10min以内,此工艺得到的铜/铝轧制复合板综合性能最佳。  相似文献   

11.
钎焊-热轧复合工艺制备不锈钢/碳钢复合板   总被引:3,自引:0,他引:3       下载免费PDF全文
针对不锈钢/碳钢复合板爆炸-轧制复合工艺存在的主要问题,提出了钎焊-热轧制备新技术,研究了主要工艺参数对钎焊复合板结合强度的影响,分析了钎焊复合板热轧的结合机理,测试了复合板的主要力学性能.结果表明,采用自制的银基钎料可以实现不锈钢/碳钢有效的钎焊结合,理想的钎焊工艺参数为:钎焊温度755~770 ℃,钎焊时间2.5~3 min.热轧过程中钎料层表现出了良好的塑性,压下率为40%时,轧后钎料层未出现断裂、分层.轧制中钎料层同基体形成的金属键显著提高了不锈钢/钎料界面的结合强度,热轧复合板的抗剪强度达到了342.6 MPa.  相似文献   

12.
采用热轧+温轧方法制备Cu/Mo/Cu复合板,研究轧制工艺对复合板结合界面及组元厚度配比的影响。结果表明:经过轧制变形后,铜钼界面实现紧密结合且结合机制为齿状啮合,铜层外表面和靠近界面层的晶粒比中部细小;随着变形量的增加,铜层等轴状晶粒沿轧制方向被拉伸,界面结合效果明显改善,且由齿状变得较为平直。分析组元厚度配比,铜层变形量较钼层的大,随着总压下量的增加,组元压下率的差值减小,变形量逐渐趋于一致;首次提出了Cu/Mo/Cu三层复合板厚度配比的关系,为实际选择原料提供依据  相似文献   

13.
提出一种采用衬板轧制进行AA1060铝/AZ31B镁/AA1060铝复合板的制备方法。结果表明:传统轧制铝/镁/铝复合板截面轮廓较为平直,而衬板轧制由于衬板可将剪切力部分转化为压应力,从而改变复合板板受力状态,在铝/镁界面连接处形成差速流动,故而界面轮廓呈现波浪状特征,层间实现互锁连接。界面连接强度为64 MPa,是传统轧制复合板的4倍。力学性能测试表明:衬板轧制复合板的抗拉强度可达210 MPa,比传统轧制法提高12.3%。综上可知,衬板轧制法为高性能铝/镁/铝异质复合板成形制造提供一种新思路。  相似文献   

14.
用热轧法制备了5A06/AZ31铝镁层状复合板材,通过金相显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)、多功能力学性能试验机等仪器,研究分析了轧制工艺参数对5A06/AZ31铝镁复合板界面形貌及结合强度的影响,并分析了其结合机制。轧制温度、压下率分别控制在430℃~450℃、35%~50%时热轧制备的5A06/AZ31铝镁层状复合板具有良好的结合界面,其结合界面具有一定的元素扩散层;扩散层厚度影响着复合板的结合强度,界面结合强度随轧制变形量和温度的增加呈现先增后降的现象;在轧制温度450℃、压下率45%时出现强度峰值,约为72. 57N/mm~2。  相似文献   

15.
研究退火温度对异步轧制法制备的铜/铝复合板界面组织及力学性能的影响,采用SEM观察界面组织形貌,结合EDX、XRD分析界面物相成分,采用显微硬度和室温拉伸实验表征复合板的力学性能。结果表明,异步轧制法制备的铜/铝复合板界面形变储能较高,退火温度为400℃时界面扩散明显;随着退火温度的升高,复合界面先后生成金属间化合物CuAl2、Cu9Al4、CuAl相,界面撕裂位置位于金属间化合物之间;界面层的显微硬度比基体的高,这是因为受到硬脆性化合物和高温软化的共同影响;退火温度越高,复合板抗拉强度越低,断裂伸长率越大。研究表明,异步轧制法制备的铜/铝复合板最佳退火温度为400℃。  相似文献   

16.
采取感应加热的方法异温轧制制备钢/铝复合板,整个过程处于一种Ar气保护氛围,研究了钢/铝复合板的结合性能和微观组织,并与冷轧工艺进行对比,分析了异温轧制工艺对结合性能的影响。结果表明:异温轧制的复合板由于钢层加热温度高于钢的动态再结晶温度,轧后碳钢组织出现等轴晶粒,发生了动态回复和再结晶,并且在钢侧近界面处产生一层平均晶粒尺寸约为5μm的等轴细晶区,相比于冷轧复合板,大大降低了复合板的加工硬化现象。异温轧制的钢/铝复合板微观界面贴合紧密,无孔洞和间隙,跨界面的Al和Fe元素扩散宽度达到2.4μm,复合板达到了良好的冶金结合状态,并且近界面的细晶区改善了板材性能,使得异温轧制复合板的剪切强度远高于冷轧板,在45%压下率下达到了85 MPa,是同等压下率冷轧复合板剪切强度(12 MPa)的7倍,冷轧板断裂发生在钢/铝结合面处,为脆性断裂,而异温轧制的复合板断裂发生在铝合金基体,剪切断面存在大量韧窝,呈现塑性断裂特征。  相似文献   

17.
本文在理论分析与模拟计算的基础上,通过热轧制备了6061 Al/AZ31B Mg/6061Al对称复合板,并对其组织结构和力学性能进行了研究。首先通过经典复合板理论计算得到了复合板中6061Al的最佳包覆率,再通过有限元方法模拟得到了复合板的最佳压下率。依据理论分析和仿真计算得到的铝的最佳包覆率和复合板的最佳压下率,对6061 Al/AZ31B Mg/6061Al复合板进行组坯,并在不同轧制温度、不同压下率和不同退火时间下进行了轧制实验,最后对实验得到的复合板进行了微观组织、拉伸性能和能谱分析。结果表明,在复合板的复合界面处的镁层中发现了再结晶晶粒,且界面上形成了由Mg17Al12和Mg2Al3组成的金属间化合物;随着轧制压下率的增大,6061 Al/AZ31B Mg/6061Al复合板的拉伸强度、延伸率和界面扩散厚度显著增大;随着轧制温度的升高,复合板的拉伸强度、延伸率和界面扩散厚度也增大;而随着退火时间的增加,复合板的拉伸强度降低,但界面扩散厚度增加。  相似文献   

18.
用有限元分析软件ANSYS/LS-DYNA研究了6061Al/AZ31B/6061Al爆炸复合板的界面轧制变形行为。分析了复合板轧制方向和宽度方向的界面节点在不同轧辊转速和相对压下率下最大等效应力和应变的变化规律,并进行了定量比较。模拟结果表明:不同轧制条件下,镁铝复合板界面各节点的最大等效应变值和应力值呈现不同的分布特点。最大轧制力随相对压下率和轧辊转速而变化。在轧辊转速30 r/min、相对压下率20%时,可以获得较好质量的轧制复合板。结果能为镁铝爆炸复合板的轧制工艺提供理论参考。  相似文献   

19.
通过拉伸试验和杯突试验对不锈钢,铝复合板成形性能进行了研究。试验结果表明:不锈钢层的应力状态决定了该复合板的成形性能,在拉伸和冲压变形过程中,裂纹首先都从不锈钢层开始,而且当不锈钢层在冲杯内侧(S.I)比起铝层在冲杯内侧(A.I)的复合板有更高的冲压变形能力。  相似文献   

20.
为满足弹药智能制造和轻量化需求,采用冷轧法制备了厚度比分别为1∶1、1∶5和1∶9的Cu/Al复合板,研究厚度比对复合板冲压性能与界面结合强度的影响。通过单轴拉伸试验获得了材料的基本力学性能和各向异性参数,以类拉深工艺的冲杯试验和杯突试验定量表征Cu/Al复合板的冲压性能。进一步研究了退火温度对复合板力学各向异性行为和界面结合强度的影响,以调控复合板的冲压性能。结果表明,3种Cu/Al复合板冲压成形件的质量良好,铜层厚度比越高,复合板的冲压性能越好;经过500℃/120 min退火后,板材的力学各向异性参数达到最低的0.027,冲压成形性能明显改善;随着退火温度的升高,扩散层的厚度逐渐变大,界面结合强度先升高后降低。研究结果可为制备具有优良冲压性能的Cu/Al复合板提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号