首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fujii Y  Minowa J 《Applied optics》1983,22(7):974-978
A demultiplexer composed of a concave diffraction grating and a multimode slab waveguide is attractive since it has many advantageous features. However, this type of demultiplexer has had high demultiplexing losses until now, because the concave diffraction gratings used had poor diffraction efficiency. A silicon concave diffraction grating has been developed to overcome this problem, manufactured by cylindrically bending a thin silicon plane diffraction grating. The diffraction efficiency of this grating was 82% at a blaze wavelength. The five-channel demultiplexer was assembled with this grating as well as with a multimode slab waveguide and a fiber array. Its branching loss was in the 1.4-1.8-dB range.  相似文献   

2.
An etched diffraction grating (EDG) demultiplexer with high sidelobe suppression is designed. Sidelobes resulting from two adjacent wavelengths are suppressed by etching two optimized rectangular air trenches in front of each output waveguide that can induce large resonance loss in the adjacent wavelength but have little influence on the operational wavelength. The designed EDG demultiplexer can suppress crosstalk to less than 50 dB in theory.  相似文献   

3.
Do DD  Kim N  Han TY  An JW  Lee KY 《Applied optics》2006,45(34):8714-8721
The design and demonstration of a holographic optical demultiplexer based on cascaded volume holographic gratings are presented. By serially adding a second holographic grating, which has a different grating period, slant angle, and center wavelength compared with those of the first grating, the operating wavelength range of the optical demultiplexer could be expanded, and, therefore, the number of channels of the holographic demultiplexer is doubled. As a result of the experiment, a 0.4 nm spaced 130- channel demultiplexer with a channel uniformity of 3.5 dB, a 3 dB bandwidth of 0.12 nm, and channel cross talk of -20 dB is experimentally achieved.  相似文献   

4.
Sugita T  Hirano K  Abe T  Itoh Y 《Applied optics》2006,45(22):5597-5606
We studied the imaging performance of a chirped grating for a demultiplexer designed for coarse wavelength division multiplexing using a wavefront aberration analysis and the ray tracing simulation. The demultiplexer was composed of a chirped grating, cylindrical lenses, and a waveguide. The best image point and the spot shape focused by the chirped grating were effectively calculated with the wavefront aberration. We applied the aberration analysis to design a waveguide to connect branched beams to photodetectors, and we confirmed the demultiplexing performance experimentally.  相似文献   

5.
A novel, to our knowledge, integrated wavelength-division multiplexing-passive optical net demultiplexer that uses an arrayed-waveguide grating and diffractive optical elements is presented. The demultiplexer is used to distribute 1.3-mum wavelength signals and to multiplex an eight-channel wavelength-division multiplexer spectrum at a 1.55-mum wavelength. The device shows high functionality and good optical performance. The measured cross talk was less than -21 dB, and the 3-dB bandwidth was determined to be 97 GHz, which is close to the theoretical value of 93 GHz. Average losses of 4.5 and 8 dB were measured for the 1.3- and the 1.55-mum signals, respectively.  相似文献   

6.
Do DD  Kim N  An JW  Lee KY 《Applied optics》2004,43(23):4520-4526
An investigation of the effects of apodization on a holographic demultiplexer that is based on a photopolymer grating is presented. Uniform and Gaussian apodized gratings are fabricated in a DuPont HRF-150-38 photopolymer. From the theoretical and experimental results, the spectral response of the apodized grating has a larger main lobe but lower sidelobes than those in the uniform-grating case. A 42-channel demultiplexer that is based on the Gaussian apodized grating with an 0.4-nm channel spacing is demonstrated. A cross-talk level of -30 dB and an interchannel uniformity of 1.5 dB are archived in the wavelength range of approximately 1550 nm.  相似文献   

7.
Onaka T 《Applied optics》1995,34(4):659-666
A mechanically ruled aberration-corrected concave grating was developed for use in the low-resolution mid-infrared spectrometer aboard the cryogenically cooled Infrared Telescope in Space. The design and the performance testing of the grating are reported. The spectrometer requires a wide spectral range (4.5-11.7 μm) and a wide field of view (8 × 8 arcmin) with a low wavelength resolution (Δλ ≤ 0.3 μm). The aberration-corrected concave grating provides a flat focal plane with a small aberration in the spatial direction compared with those caused by the finite size of the entrance slit. It also permits a simple design for the spectrometer, which is advantageous for applications in space cryogenic instruments. The measurements of the wavelength resolution and the spatial resolution are shown to be in good agreement with the predicted performance. The diffraction efficiency of the grating is more than 80% at the blaze wavelength (6 μm) and fairly high (>30%) over the entire wavelength range in question. The grating produces polarization of less than 10% for λ < 6.4 μm and of 10-20% for 6.7 μm <λ 9.7 μm. These results indicate the potential applicability of this type of grating to the wide-field IR spectroscopic observations.  相似文献   

8.
Lin YJ  Lee SL  Yao CL 《Applied optics》2003,42(15):2689-2694
A coarse wavelength division multiplexer is designed on a silicon-on-insulator waveguide using the Mach-Zehnder interferometers with novel multimode interface-periodically segmented waveguide couplers and segmented waveguide arms. It is viable for metro and access applications, since it can be inexpensive and provide easy fabrication, compact size, and good output performance. As a design example, the channel spacing of the demultiplexer is chosen to be 24.5 nm for applications to the 10-Gigabit Ethernet. The simulation results show that the wide-passband demultiplexer can have insertion loss less than 2.3 dB and crosstalk better than 18 dB.  相似文献   

9.
The efficiency of a diffraction grating was measured near normal incidence in the 125-225-A wavelength range with synchrotron radiation. The grating pattern had 2400 grooves/mm and was recorded on a concave fused-silica blank by a holographic technique. The grooves were shaped by ion-beam etching to provide a facet with a blaze angle of 2.5 degrees as determined by atomic force microscopy. Because of the characteristics of the etching process the groove profile was approximately triangular, with the other facet inclined at an angle of 5.5 degrees to the surface. The measured efficiency was compared with the efficiency calculated by a computer program, small enough to run on a personal computer, that solved the periodic boundary-value problem corresponding to electromagnetic radiation incident on a diffraction grating with finite conductivity. The calculation was based on the nominal groove profile that was determined by atomic force microscopy. The measured and the calculated efficiencies were in good agreement. This investigation indicates that the diffraction efficiency of a normal-incidence grating can be calculated in the soft-x-ray region with a personal computer.  相似文献   

10.
Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 degrees, and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.0 nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating.  相似文献   

11.
Duval M  Fortin G  Piché M  McCarthy N 《Applied optics》2005,44(24):5112-5119
We present a novel scheme of tunable semiconductor laser based on the use of a chirped grating in an external cavity. The chirped grating is fabricated using a simple holographic technique: two Gaussian beams having wavefronts with different radii of curvature are brought to interfere on a photoresist layer. The tuning properties of chirped gratings have been investigated with semiconductor lasers operated with an external cavity. With this type of grating positioned in Littrow configuration, the wavelength selection can be done by translating the grating without any need to rotate it. This cavity configuration provides a tunable output beam with an angle of propagation that is independent of the wavelength. The translation of chirped gratings was shown to tune a visible diode laser and an infrared diode laser over the same spectral band as the conventional tuning scheme where an unchirped grating is rotated.  相似文献   

12.
Abstract

The theory of blazed holographic gratings given in a previous paper is applied to the design of a blazed holographic aberration-corrected spherical concave grating. Two solution types are found which cover different ranges of blaze wavelength and aberration. The use of the refractive indices of the substrate, and the medium in front of the photoresist, as optimising parameters is demonstrated. Four ray-traced solution examples are given which include the distributions of blaze angle and wavelength across the grating surface.  相似文献   

13.
We report the design and fabrication of a chirped switchable reflective grating (CSRG) recorded in a holographic polymer-dispersed liquid-crystal material. This CSRG is a spatial wavelength-selective flattener in a free-space dynamic gain equalizer for use in wavelength-division multiplexing (WDM) networks. Prelimenary experimental results show that this device permits the management of the spectral power of a WDM stream with an attenuation range of 6 dB. The polarization-dependent loss introduced by the CSRG is shown to be less than 0.1 dB.  相似文献   

14.
Qiao J  Zhao F  Chen RT  Horwitz JW  Morey WW 《Applied optics》2002,41(31):6567-6575
A high-density wavelength division demultiplexer (DEMUX) capable of demultiplexing eight-channel 200-GHz optically spaced signals into a 62.5-microm multimode-fiber array is reported. The wavelength range of operation is from 1549.32 to 1560.61 nm within the International Telecommunication Union grid. The measured wavelength accuracy is within 0.04 nm. The mean insertion loss of this DEMUX is 1.95 dB. Thermal analysis and temperature testing results are reported. The temperature test cycling from 20 degrees C to 60 degrees C indicates that the wavelength thermal drift is less than 0.8 pm/degrees C. Adjacent cross talk is measured to be better than -45 dB. The measured data transmission bit rate of this device is higher than 3.5 Gb/s.  相似文献   

15.
We have measured the topography of a holographic ion-etched spherical blazed grating and three of its replicas using an atomic force microscope. The master grating had a roughness of less than 5 angstroms rms, a blaze angle of 2.5 degrees, and an antiblaze angle of 3.3 degrees. Thus the groove profile was more triangular than sawtooth. We find that the replication process did not significantly change the master grating. Moreover, we find no significant difference in roughness, blaze angle, or antiblaze angle between the master and its replicas before or after multilayer coating. However, bumps were observed on the gratings after coating, the cause of which is not understood. Although widespread, they occupy a relatively small fraction of the total area.  相似文献   

16.
Two Mo/Si multilayer-coated blazed gratings have been fabricated for operation at soft-x-ray wavelengths above the Si L edge, λ ≥ 12.4 nm, at (near) normal incidence. The sawtooth profile of the grating structure was mechanically ruled into a 200-nm Au film that was deposited onto a plane glass substrate. To smooth the rough Au surface and to prevent interdiffusion of the Au film with the upper Mo/Si multilayer, a carbon film was evaporated onto the Au grating surface of one of the gratings before the deposition of the multilayer coating. We matched the multilayer grating, working on blaze in the third diffraction order, in which an absolute diffraction efficiency of 3.4% at a wavelength of 14 nm was measured, whereas only 1.1% was achieved for a similar grating (without a carbon interlayer). These efficiencies are higher than those obtained for other ruled blazed gratings reported in the literature. As a result of the multilayer and grating periodicity, the wavelength of diffraction can be tuned bya rotation of the grating, which is important for application in a soft-x-ray monochromator.  相似文献   

17.
Liu Y  Yao J  Yang J 《Applied optics》2003,42(13):2273-2277
A fiber grating prism that consists of four tunable chirped-grating delay lines for wideband true-time-delay beam forming is proposed and demonstrated. The chirped gratings are produced by use of the grating bending technique in which a uniform grating is surface mounted on a simply supported beam. We obtained chirped gratings with different chirp rates by bending the uniform gratings with different beam deflections. Four linear chirped fiber gratings with identical spectral width but linearly increased grating length are fabricated. The spectra and time-delay responses of the tunable chirped gratings are measured. A chirped-grating prism for wideband true-time-delay beam forming by use of four chirped gratings is constructed and tested experimentally. We obtained different time delays by tuning the wavelength of the optical carrier. The proposed true-time-delay beam former with a four-element phased-array steerer is suitable for continuous beam forming at microwave frequencies up to 20 GHz.  相似文献   

18.
The efficiencies of replicas of the Skylab 3600-line/mm concave grating with multilayer and gold coatings were measured by using synchrotron radiation at an angle of incidence of 79 degrees and in the 28-42-A wavelength range. The blaze angle of the grating facets that faced the incident radiation was 3.1 degrees , and the average angle of the opposite facets was 6 degrees . For the gold grating, the -1 outside order had the highest efficiency of any diffracted order (excluding the zero order) over the entire wavelength range. Calculations of the grating efficiency indicated that the high efficiency in the -1 order resulted from the rather small angle (6 degrees ) of the facets opposite the incident radiation. For the multilayer grating, the efficiency in the on-blaze +2 inside order was enhanced in the 30-34-A wavelength region as a result of the high reflectance of the multilayer coating. The maximum efficiency in the +2 order occurred at the wavelength (32 A) corresponding to the peak of the reflectance of the multilayer coating on the facets facing the incident radiation. These results further demonstrate that a multilayer coating can be used to enhance the efficiency, in a selected wavelength range and in the on-blaze order, of a grating operating at a small grazing angle (11 degrees ).  相似文献   

19.
Convex grating types for concentric imaging spectrometers   总被引:1,自引:0,他引:1  
The properties of convex gratings fabricated by electron-beam lithography are investigated. Three grating types are shown. The first is a single-panel, true blazed grating in which the blaze angle stays constant relative to the local surface normal. This grating provides high peak efficiencies of approximately 88% in the first order and 85% in the second order. The second grating has two concentric panels, with each panel blazed at a different angle. This type permits flexibility in matching the grating response to a desired form. The third type has a groove shape that departs from the sawtooth blazed profile to increase the second-order bandwidth. All these types are difficult or impossible to produce with conventional techniques. The gratings compare favorably with conventional (holographic and ruled) types in terms of efficiency and scatter. Simple scalar models are shown to predict the wavelength response accurately. These gratings allow the optical designer to realize fully the considerable advantages of concentric spectrometer forms.  相似文献   

20.
We present a method of interfacing a conventional wavelength multiplexing and demultiplexing device with a two-dimensional (2-D) array of surface-active elements, such as micro-electromechanical system devices or photodetectors. We use diffractive optical elements to transform wavelength division multiplexed signals spread along a line into a 2-D array. We applied this technique to build a device that is compatible with an arrayed-waveguide grating. The theoretical insertion loss predicted by combining beam propagation and rigorous coupled-wave analysis is 2.75 dB. However, the experimental loss is 10 dB. The difference is due to the poor quality of the diffraction gratings. Nevertheless, the formatting operation was performed successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号