首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

2.
A weak acid acrylic resin was used as an adsorbent for the investigation of Basic Blue 3 (BB3) adsorption kinetics, isotherms, and thermodynamic parameters. Batch adsorption studies were carried out to evaluate the effect of pH, contact time, initial concentration (28–100 mg/g), adsorbent dose (0.05–0.3 g), and temperature (290–323 K) on the removal of BB3. The adsorption equilibrium data were analyzed by the Langmuir, Temkin, and Freundlich isotherm models, with the best fitting being the first one. The adsorption capacity (Qo) increased with increasing initial dye concentration, adsorbent dose, and temperature; the highest maximum Qo (59.53 mg/g) was obtained at 323 K. Pseudo‐first‐order and pseudo‐second‐order kinetic models and intraparticle diffusion models were used to analyze the kinetic data; good agreement between the experimental and calculated amounts of dye adsorbed at equilibrium were obtained for the pseudo‐second‐order kinetic models for the entire investigated concentrations domain. Various thermodynamic parameters, such as standard enthalpy of adsorption (ΔHo = 88.817 kJ/mol), standard entropy of adsorption (ΔSo = 0.307 kJ mol?1 K?1), and Gibbs free energy (ΔGo < 0, for all temperatures investigated), were evaluated and revealed that the adsorption process was endothermic and favorable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Functionalized polymeric microbeads were investigated as adsorbent for the removal of three direct dyes from aqueous solutions. The effects of different experimental parameters, such as initial dye concentration, temperature, and solution pH on the adsorption process were investigated. The adsorption process can be conducted with very good result at normal working conditions: neutral pH and normal temperature. The maximum percentage removal obtained was 99.11% for the symmetrical disazo dye, 90.14% for asymmetrical disazo dye, and 98.53% for trisazo dye. The adsorption kinetics followed the pseudo‐second‐order equation for all three investigated dyes in all working conditions. The experimental data were fitted to Langmuir, Freundlich, Sips, and Redlich–Peterson isotherm models, and the best fit was obtained with Sips model. Thermodynamic parameters (ΔH°, ΔS°, and ΔG°) revealed that dye adsorption is an endothermic and spontaneous process. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
《分离科学与技术》2012,47(15):2513-2534
Abstract

Activated clay was used to study the adsorption behavior of dyestuffs in synthetic wastewater containing dyestuffs. Three basic dyes were used: C.I. Basic Red 18 (or BR18), C.I. Basic Red 46 (BR46), and C.I. Basic Yellow 28 (BY28). Adsorption occurred almost instantaneously upon contact. The mechanism of adsorption was explained by a charge to the electrostatic attractive force described in the Langmuir adsorption isotherm. The mass transfer coefficient was also calculated by the external mass transfer model in an adsorbent according to Mckay et al. Parameters including species of basic dyes, initial concentration, temperature, size of adsorbent, and NaCl were extensively investigated.  相似文献   

5.
Seema Jain 《Desalination》2010,250(3):921-1541
The adsorption of two basic dyes, methylene blue (MB) and crystal violet (CV) on wood apple shell (WAS) were investigated using a batch adsorption technique. A series of experiments were undertaken in an agitated batch adsorber to assess the effect of the system variables such as solution pH, dye concentration and temperature. Removal of dyes was observed to be most effective at higher pH. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The results showed that Langmuir equation fits better than the Freundlich equation. It was observed that the WAS adsorbent showed higher adsorption capacity for crystal violet (130 mg/g) than methylene blue (95.2 mg/g). The FTIR studies indicate that the interaction of dye and WAS surface is via the nitrogen atoms of the adsorbate and oxygen groups of the adsorbent. The adsorption of dyes onto WAS proceeds according to a pseudo-second-order model. Thermodynamic parameters such as free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were also calculated. The studies show that WAS, a lignocellulosic inexpensive material, can be an alternative to other expensive adsorbents used for dye removal in wastewater treatment.  相似文献   

6.
Chitosan intercalated montmorillonite (Chi-MMT) was prepared by dispersing sodium montmorillonite (Na+-MMT) into chitosan solution at 60 °C for 24 h. The Chi-MMT was characterized by XRD, XRF and FT-IR. The intercalation was accomplished via the ion-exchange of Na+ ions with –NH3+ of chitosan, resulting in the expansion of d001 from 1.42 nm of Na+-MMT to 2.21 nm of Chi-MMT. The chitosan content in the Chi-MMT measured by TGA was about 17 mass%. The adsorption capacity of Chi-MMT was investigated in comparison with the starting Na+-MMT and chitosan using three different cationic dyes, i.e. basic blue 9 (BB9), basic blue 66 (BB66) and basic yellow 1 (BY1). The Chi-MMT showed the highest adsorption capacity in the range of 46–49 mg/g when the initial dye concentration was 500 mg/L, being equivalent to 92–99 wt.% of dye removal. The adsorption capacities of Chi-MMT for all basic dyes increased with an increase of initial dye concentration. An increase of adsorption capability of Chi-MMT was attributed to the existence of intercalate-chitosan. It could enlarge the pore structure of Chi-MMT, facilitating the penetration of macromolecular dyes, and also electrostatically interact with the applied dyes. These results indicated the competency of Chi-MMT adsorbent for basic dye adsorption.  相似文献   

7.
The extraction of Stipa tenacessima L Alfa fibers was performed using alkaline procedure to remove noncellulosic substances such as pectin, lignin, and hemicellulose. The degree of polymerization of extracted and purified Alfa fibers was determined using viscosimetric method and extracted fibers were used as a cationic ion‐exchange material by treating alkali‐cellulose of Alfa with EpoxyPropylTriMethylAmmonium Chloride (EPTMAC). Evidence of grafting was monitored using IR spectroscopy and thermogravimetry analysis. Two EPTMAC‐Alfa fibers with different %N were prepared and tested as adsorbent of four acid dyes: Acid Blue 25 (AB 25), Acid Yellow 99 (AY 99), Reactive Yellow 23 (RY 23), and Acid Blue 74 (AB 74). The modeling of the adsorption isotherms using Langmuir, Freundlich, and Jossens allowed the determination of isotherm constants leading to characterize the different adsorbent/adsorbate systems prepared. Thermodynamic parameters such as change in free energy (ΔG), the enthalpy (ΔH), and the entropy (ΔS) were also evaluated. Additionally, regeneration of adsorbent solid supports by desorption process in fixed bed column was reported. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
《分离科学与技术》2012,47(11):1797-1807
Batch adsorption study was carried out to remove excess fluoride from water using pyrophyllite. Result showed that adsorption of fluoride was rapid in first 20 min and thereafter increased slowly to reach the equilibrium in about 2 hrs. About 85% removal efficiency was obtained within 2 hrs at an adsorbent dose of 4 g/L for initial fluoride concentration of 10 mg/L. Maximum fluoride adsorption takes place at pH 4.9. Thermodynamic parameters such as Gibb's free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were determined for the adsorption process. Negative ΔH° value signified that the adsorption process was exothermic in nature. From the kinetic study it was found that fluoride adsorption by pyrophyllite followed pseudo-second-order kinetics with an average rate constant of 0.92 g/mg · min. Intraparticle diffusion model was studied to determine the rate limiting step of the adsorption process. The system followed the Langmuir isotherm with maximum adsorption capacity of 2.2 mg/g of fluoride.  相似文献   

9.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

11.
Adsorption characteristics of four different dyes Safranin O (cationic), Neutral Red (neutral), Congo Red (anionic) and Reactive Red 2 (anionic) on Si-MCM-41 material having very high surface area are reported. The surface morphology of Si-MCM-41 material before and after adsorbing dye molecules are characterised by FTIR, HRXRD, nitrogen adsorption–desorption isotherms, FESEM, and HRTEM. The adsorption capacities of Si-MCM-41 for the dyes followed a decreasing order of NR > SF > CR > RR2. The adsorption kinetics, isotherm and thermodynamic parameters are investigated in detail for these dyes using calcined Si-MCM-41. The kinetics and isotherm data showed that both SF and NR adsorb more rapidly than CR and RR2, in accordance with pseudo-second-order kinetics model as well as intraparticle diffusion kinetics model and Langmuir adsorption isotherm model respectively. The thermodynamic data suggest that the dye uptake process is spontaneous. The high adsorption capacities of dyes on Si-MCM-41 (qm = 275.5 mg g?1 for SF, qm = 288.2 mg g?1 for NR) is explained on the basis of electrostatic interactions as well as H-bonding interactions between adsorbent and adsorbate molecules. Good regeneration capacity is another important aspect of the material that makes it potent for the uptake of dyes from aqueous solution.  相似文献   

12.
BACKGROUND: This research describes the adsorption of copper ions from aqueous solutions following the modification of rubber (Hevea brasiliensis) leaves with formaldehyde solution. The main objectives of this research were to identify the binding mechanisms of copper ions on the chemically modified rubber leaves by spectroscopic techniques and to investigate the effects of several important physicochemical parameters such as pH, copper concentration, contact time, adsorbent dose and temperature on copper removal. RESULTS: Based on a kinetic study, the pseudo‐second‐order model was found to fit the experimental results well, while the Boyd kinetic model indicated that the rate‐determining step was due to film diffusion. Adsorption isotherms were modelled by the Langmuir and Freundlich isotherm equations, with the former providing a better fit for the data. Based on the Langmuir model, the maximum adsorption capacities of Cu(II) ions at 300, 310 and 320 K were 8.36, 8.61 and 8.71 mg g?1, respectively. Thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy changes (ΔS°) were calculated. The adsorption process was spontaneous as the values of ΔG° were negative, and endothermic as higher adsorption capacities were recorded at higher temperatures. More than 80% of copper ions bound on the adsorbent were able to be desorbed using 0.02 mol L?1 HCl, HNO3 and EDTA solutions. Besides ion exchange, surface complexation could also play a major role in copper binding. CONCLUSION: Due to its relative abundance and satisfactory adsorption capacity, the modified rubber leaves can be considered as a good low‐cost adsorbent for removing copper ions from dilute aqueous solutions. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

14.
Struvite powder obtained from swine wastewater was used as adsorbent to remove an azo leather dye from aqueous solution. The material was characterized by X-ray diffraction, surface area, and atomic force microscopy. The sample presented a single phase having a mesoporous structure and surface area of 35.63 m2 g?1. Langmuir and Freundlich isotherm models were fitted to the adsorption data and both satisfactorily represented the process. The maximum adsorption capacity was 38.14 mg g?1. From the analysis of thermodynamic parameters such as free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) it was verified that the adsorption process is very fast, spontaneous, and exothermic in nature, with weak forces acting.  相似文献   

15.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

16.
A series of polyurethane–attapulgite porous (HATT/PU) materials were prepared from polyether polyol (NJ‐330), toluene diisocyanate (TDI), acid activated attapulgite (HATT), sodium bicarbonate as foaming agent, dibutylbis (lauroyloxy) tin (DBLT) as catalyst and silicon oil as stabilizer by foaming technique. The materials were characterized by FTIR, XRD and SEM. The polyurethane–attapulgite porous material as adsorbent was applied to malachite green (MG) dye wastewater treatment. Effects of attapulgite content, time, temperature, pH, and adsorbent dosage have been studied. The experimental results show that the maximum adsorption efficiency occurred at an attapulgite content of 6.0%, a time of 2.5 h, a temperature of 35°C, a pH >5 and a HATT/PU dosage of 40 mg/mL. Equilibrium isotherms for the adsorption of the dye have been measured experimentally. Results were analyzed by the Freundlich and Langmuir equation and the characteristics parameters for each adsorption isotherm were determined: Gibb's free energy (ΔG°), change in enthalpy (ΔH°) and change in entropy (ΔS°) have been calculated. The results indicated that the adsorption process was spontaneously an endothermic reaction and kinetically proceeded according to the pseudo‐second‐order model. The experimental results suggest that the prepared polyurethane–attapulgite porous materials have potential application for the wastewater treatment containing MG dye. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A test laboratory (lab) for carbon dioxide (CO2) adsorption from raw biogas onto a novel adsorbent was used to size a CO2 removal unit in the development of a low-cost biogas treatment technology. The novel adsorbent was made out of clay and burnt maize cob particles, impregnated with hot natural alkaline solution of pH 10 ± 0.5, degassed, and then activated at a temperature of 250°C, thereby making it low cost. The activated absorbents were spherical balls of average diameter 17 mm, density 410 kg/m3, and surface area 128 m2/g, and contained exchangeable ions due to the presence of clay and increased pore sizes due to impregnation, degassing, and activation. The effect of pressure drops on CO2 removal, the breakthrough curve, and the absorption isotherm were studied. As a result, reduced pressure drops enhanced CO2 removal and 102 Pa/m was the suitable pressure drop; pressure drops less than 102 Pa/m were impractical because the biogas did not exit. The breakthrough curve was in typical s-shape and thus satisfied its use for determining the adsorption rate constant (k1) to be 0.001952 l/mg s and the maximum percent of CO2 removal to be 87.8% at 102 Pa/m pressure drop and temperatures ranging from 20 to 28°C. The isotherm was found to closely conform to the definition of the Freundlich equation with the Freundlich coefficient of 0.01809 (l/g)n, where n = 1.37 at the same temperature range. Therefore, the determined k1 and fitted Freundlich isotherm can be used to size the CO2 adsorption unit under these conditions.  相似文献   

18.
Adsorption removal of Cu (II) and Pb (II) on cross-linked chitosan/Al13-pillared montmorillonite (CCPM) was examined in solutions. The chitosan dosage was drastically reduced in the new nanocomposite, which is made from the treated clay (Al13-pillared montmorillonite). Several important parameters that influenced the adsorption of Cu (II) and Pb (II) ions, such as cross-linked chitosan-to-clay ratio, pH, temperature, initial concentration, dosage, and contact time effect, were systematically investigated. Result showed that in the nanocomposite with cross-linked chitosan-to-clay ratio of 0.45:1, the maximum removal efficiencies of Cu (II) [pH 6.5, dosage 10 g/L, initial Cu (II) concentration 100 mg/L, contact time 2 h, 298 K] and Pb (II) [pH 6.0, dosage 5 g/L, initial Pb (II) concentration 100 mg/L, contact time 2 h, 298 K] were 96.0% and 99.5%, respectively. Kinetic and isotherm studies have indicated that the adsorption process of Cu (II) or Pb (II) nanocomposites was better fitted by the pseudo-second-order equation and the Freundlich equation, with chemical adsorptions as the rate-limiting step. The metal–ion affinity to the functional groups of CCPM followed the order Pb (II) > Cu (II). The thermodynamic parameters ΔH and ΔS values showed that the sorption process of Cu (II) or Pb (II) was spontaneous (ΔG < 0), was endothermic (ΔH < 0), and had decreased entropy (ΔS < 0). HNO3 (0.1 M) could be a good desorbent in the recovery of metal ions after adsorption and regeneration of the adsorbent.  相似文献   

19.
《分离科学与技术》2012,47(5):1239-1259
Abstract

The present study aims to evaluate the influence of various experimental parameters viz. initial pH (pH 0), adsorbent dose, contact time, initial concentration and temperature on the adsorptive removal of furfural from aqueous solution by commercial grade activated carbon (ACC). Optimum conditions for furfural removal were found to be pH 0 ≈ 5.9, adsorbent dose ≈ 10 g/l of solution and equilibrium time ≈ 6.0 h. The adsorption followed pseudo‐second‐order kinetics. The effective diffusion coefficient of furfural was of the order of 10?13 m2/s. Furfural adsorption onto ACC was found to be best represented by the Redlich‐Peterson isotherm. A decrease in the temperature of the operation favorably influenced the adsorption of furfural onto ACC. The positive values of the change in entropy (ΔS 0); and the negatived value of heat of adsorption (ΔH 0) and change in Gibbs free energy (ΔG 0) indicated feasible, exothermic, and spontaneous nature of furfural adsorption onto ACC.  相似文献   

20.
《分离科学与技术》2012,47(4):486-496
The efficacy of treated Shorea dasyphylla bark for Cu(II) and Cr(VI) adsorption was assessed in a batch adsorption system as a function of pH, agitation period, and initial metal concentration. The equilibrium nature of Cu(II) and Cr(VI) adsorption was described by the Freundlich, Langmuir, and Dubinin-Radushkevich isotherms. The maximum monolayer capacities of treated Shorea dasyphylla bark, estimated from the Langmuir equation were 184.66 and 42.72 mg/g for Cu(II) and Cr(VI), respectively. The experimental results were fitted using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models; the pseudo-second order showed the best conformity to the kinetic data. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined by applying the Van't Hoff equation. The adsorption of Cu(II) and Cr(VI) onto treated Shorea dasyphylla bark was found to be spontaneous and exothermic. The adsorption mechanism was confirmed by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The dimensionless constant separation factor (R L), indicated that treated Shorea dasyphylla bark was favorable for Cu(II) and Cr(VI) adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号