共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Granular activated carbons were obtained from grape seeds by pyrolysis at 600°C and subsequent physical activation with CO2 (750–900°C, 1–3 h, 25–74% burn-off). The carbon and ash content increased during the activation, reaching values of 79.0% and 11.4%, respectively. Essentially microporous materials with BET surface areas between 380 and 714 m2/g were obtained. The performance of the activated carbon in the adsorption of diuron in aqueous phase was studied within the 15–45°C temperature range. Equilibrium data showed that the maximum uptake increased with temperature from 120 to 470 µmol/g, also evidencing some dependence of the adsorption mechanism on temperature. Data were fitted to five isotherm models [Langmuir, Freundlich, Dubinin–Radushkevich, BET, and GAB (Guggenheim, Anderson, and de Boer)]. Kinetic data were analyzed using first- and second-order rate equations and intraparticle diffusion model. The second-order rate constant values obtained (2.8–13.5 × 10?3 g/µmol min) showed that the hollow core morphology of the material favors the adsorption kinetics. 相似文献
3.
Supported K2CO3/Co–MoS2 on activated carbon was prepared by a co-impregnation technique and has been characterized by X-ray diffraction (XRD) and BET. Active ingredients ranged from 39 to 66% and included molysulfide and cobalt sulfide. XRD analysis indicates that cobalt and molybdenum sulfides are found in the Co3S4 and Co9S8 phases. These catalysts were performance tested in a fixed-bed reactor under higher alcohol synthesis conditions, 2000–2400 psig and 270–330°C. Active chemicals on the carbon extrudates decreased the surface area dramatically, as measured by BET. Surprisingly, at the high level of active chemicals, alcohol productivity and selectivity were decreased. An increase in the reaction temperature led to a decrease in the selectivity of methanol and an increase in selectivity of hydrocarbons. Total alcohol productivity was also increased as gas hourly space velocity (GHSV) was increased. Co9S8 may play a role in the catalyst aging process. In prolonged reaction periods (140 h), sulfur is lost from the surface, possibly as H2S. The quantity of Co9S8 on the surface appears to increase as the catalyst ages. 相似文献
4.
《分离科学与技术》2012,47(5):710-719
In this work, adsorption isotherms and adsorption kinetics of CO2 on zeolite 13X and activated carbon with high surface area (AC-h) were studied. The adsorption isotherms and kinetic curves of CO2 on the adsorbents were separately measured at 328 K, 318 K, 308 K, and 298 K and with a pressure range of 0–30 bar by means of the gravimetric adsorption method. The mass transfer constants and adsorption activation energy Ea of CO2 on the adsorbents were estimated separately. Results showed that at very low pressure the amounts adsorbed of CO2 on the zeolite 13X was higher than that on the AC-h, while at higher pressure, the amounts adsorbed of CO2 on the AC-h was higher than that on the zeolite 13X since the AC-h has a larger surface area and a larger total pore volume compared to the zeolite 13X. The adsorption kinetics of CO2 can be well described by the linear driving force (LDF) model. With the increase of temperature, the mass transfer constants of CO2 adsorption on both samples increased. The adsorption activation energy Ea for CO2 on the two adsorbents decreased with the increase of pressure. Furthermore, at low pressure the Ea for CO2 adsorption on the zeolite 13X was slightly lower than that on the AC-h, while at higher pressure the Ea for CO2 adsorption on the zeolite 13X was higher than that on the AC-h. 相似文献
5.
以氯化汞为目标污染物,研究了椰壳活性炭对气态氯化汞的吸附性能,并结合活性炭微结构表征以及动力学模型拟合研究了其吸附机理。结果表明,椰壳活性炭对气态氯化汞的最大吸附量35.9 mg/g,且活性炭比表面积和总孔容对其吸附氯化汞有显著影响,比表面积大、总孔容大有利于提高饱和吸附量。载气流量不影响活性炭对氯化汞的饱和吸附量,但是影响其吸附时间,增大载气流量能够缩短吸附时间。温度对吸附量和吸附时间均有影响,升高温度能够提高吸附量且缩短吸附时间。通过对吸附过程的动力学模拟,发现活性炭对氯化汞的吸附均符合班厄姆动力学模型,相关系数均大于0.99,活性炭的吸附速率与吸附量随比表面积与总孔容的增大而增大。 相似文献
6.
Muhammad Younas Loong Kong Leong Abdul Rahman Mohamed 《Chemical Engineering Communications》2016,203(11):1455-1463
The aim of this study was to verify the ability of nickel-impregnated palm shell activated carbon (PSAC) for CO2 adsorption and compare its performance with the chemically and physically activated PSAC. Sodium hydroxide and CO2 were used as activating agents for chemical and physical activation, respectively. Nickel nitrate hexahydrate (Ni(NO3)2·6H2O) was used as a precursor for metal impregnation. The effect of different chemical loadings (NaOH: 20–50 wt%), metal impregnation (Ni(NO3)2·6H2O: 16–28 wt%), and heat treatment time (1–4 h) was studied as parameters. Adsorption capacity was calculated using breakthrough graphs. The effect of humidity on CO2 adsorption and desorption of CO2 was also investigated in this study. The results revealed that chemically modified PSAC yields the highest adsorption capacity (48.2 mg/g) compared to other methods of activation. Interestingly, it was found that the adsorption capacity of nickel-impregnated PSAC was similar to other types of metal-impregnated activated carbon. Humidity gave a negative effect on CO2 adsorption. In summary, results showed that chemical activation is an efficient technique to modify PSAC for CO2 adsorption. 相似文献
7.
CO2 Adsorption Kinetics of K2CO3/Activated Carbon for Low‐Concentration CO2 Removal from Confined Spaces 下载免费PDF全文
K2CO3 supported on activated carbon (K2CO3/AC) is a promising means to remove low‐concentration CO2 from confined spaces. In this removal process, physical adsorption plays an important role but it is difficult to quantify the amount of CO2 adsorbed when both H2O and CO2 are present. The linear driving force mass transfer model is adopted to study the CO2 adsorption kinetic characteristics of K2CO3/AC by analyzing the experimental data. The effect of K2CO3 and H2O on the adsorption of CO2 in K2CO3/AC was also evaluated. K2CO3 loaded on the support is found to increase the mass transfer resistance but decrease the activation energy required for the physical adsorption process. The presence of water vapor is disadvantageous to achieve high physical adsorption capacity since it enhances the chemical sorption in the competitive dynamic sorption process. 相似文献
8.
《国际智能与纳米材料杂志》2013,4(1):55-61
A series of SK-activated carbons were prepared by carbonising soya beans in the presence of KOH as activation agent. Different activation temperatures were applied to study the influence of preparation conditions on the surface properties of the carbons and their CO2 adsorption capacity. It was found that the CO2 adsorption capacity is directly related to the nature of surface basic N-containing groups and that the highest CO2 adsorption capacity value was 4.24 mmol/g under 25°C and 1 atm. 相似文献
9.
表面改性对活性炭吸附性能的影响 总被引:1,自引:0,他引:1
采用浓硝酸对活性炭进行表面氧化处理,将得到的样品分别浸渍在银氨、硫酸铜及咪唑溶液中进一步改性,然后采用Boehm滴定法对改性活性炭表面酸性基团的含量进行测定,研究改性对活性炭吸附性能的影响。结果表明:通过上述改性,活性炭表面酸性基团发生了显著变化,特别是羧基含量增加较多,从而活性诙的吸附性能发生了相应的变化。 相似文献
10.
活性炭对丁酮的吸附动力学研究 总被引:1,自引:0,他引:1
研究了2种活性炭(木质活性炭和煤质活性炭)对丁酮的吸附,重点考察了活性炭的吸附时间、吸附温度和丁酮载气流量对丁酮吸附的影响,并用准一级、准二级、Elovich和Bangham 4种动力学模型对活性炭在不同温度条件下对丁酮的吸附行为进行了动力学拟合,确定其动力学吸附模型。实验表明:不同的活性炭对丁酮的吸附过程不同;活性炭对丁酮的吸附是一个吸附和解吸同时存在的过程,当吸附速率和解吸速率相等时,该过程达到吸附平衡;随着吸附温度的升高,活性炭对丁酮的饱和吸附量逐渐降低,说明活性炭对丁酮的吸附过程为放热反应;丁酮载气流量对活性炭吸附丁酮达到饱和的时间以及吸附速率有影响,对AC-1的最终饱和吸附量影响显著,对AC-2的最终饱和吸附量没有显著影响。这2种活性炭吸附丁酮最适宜的吸附温度均为303 K,最佳的载气流量为400 mL/min。在不同温度下对活性炭吸附丁酮的过程进行动力学分析,发现Bangham方程计算得到的相关系数R2大于0.99,因此,活性炭对丁酮的吸附动力学方程符合Bangham动力学方程。 相似文献
11.
《分离科学与技术》2012,47(4):886-907
Abstract Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500°C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning electron microscopy (SEM), Brunauer Emmett Teller (BET) N2‐gas adsorption, surface area and Energy Dispersive X‐Ray (EDX) analysis. The comparison between untreated and ZnCl2 treated GAC indicates that treatment with ZnCl2 has significantly improved the adsorption efficacy of untreated GAC. The adsorption capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic study reveals that equilibrium was achieved within one hour. The adsorption data conform best fit to the Langmuir isotherm. Kinetic study results reveal that present adsorption system followed a pseudo‐second‐order kinetics with pore‐diffusion‐controlled. Results of the present study recommend that the adsorption process using ZnCl2 treated coconut GAC might be a promising innovative technology in future for nitrates removal from drinking water. 相似文献
12.
《分离科学与技术》2012,47(8):1609-1627
Abstract In this study, active carbons prepared from almond and hazelnut shells under various experimental conditions were investigated. Merck-2514 and Merck-2184 active carbons were used for comparison. N2 (77 K) gas and CO2 (273 and 195 K) gas adsorptions were determined as comparison criteria. Regarding the specific surface area and micropore volume results obtained from these adsorption data, it is concluded that N2 (77 K) adsorption by itself is inadequate in the characterization of active carbons which are low-sized microporous dominated. In addition, it is concluded that it would be useful to investigate CO2 (195 and 273 K) adsorption. The iodine and methylene blue tests at 298 K were also applied for the characterization of the carbon adsorbents mentioned. From these data it was seen that the iodine test can be applied as a total porosity indicator and that the methylene blue test can be used as a developed microporosity indicator. These results indicate that the best adsorbents were those prepared from hazelnut shells. Depending on the preparation conditions, the physically activated carbon has an activation time up to 4 hours and has adsorption properties on the level of Merck commercial carbons. 相似文献
13.
《分离科学与技术》2012,47(13):1940-1951
To clarify the inconsistent behavior of the literatures’ results, the impact of various Activated carbon (AC) oxygen functional groups (OFGs) were assessed systematically on the adsorption of thiophenic compounds (TCs). AC samples were oxidized with HNO3 and, afterwards, heat treated to load different OFGs. The adsorption capacity of TCs increases in the range of 30-100% by oxidation at 25°C. At severe oxidation condition the adsorption capacity decreases 17.2-100% due to pore blocking. As methyl group or aromatic ring of adsorbate molecules increases, the most likely adsorption mechanism will be interaction to active site, whereas dispersion interaction is the governing adsorption mechanism of adsorbate molecules with lower number of aromatic ring. 相似文献
14.
三卤甲烷(THMs)是水中天然有机物在氯化消毒过程中产生的对人体有致癌作用的挥发性物质,腐殖酸是生成消毒副产物的主要前驱物。活性炭能够去除水中的多种有机污染物,其中对腐殖酸的去除性能可以通过单宁酸值来表征。通过间歇试验,研究了两种活性炭对单宁酸的吸附行为,探索其对单宁酸的吸附规律。结果表明308 K时,1#炭对单宁酸的饱和吸附量较大,为616.0 mg/g。升高温度有利于两种活性炭对单宁酸的吸附,表明吸附过程为吸热过程。此外,两种活性炭对单宁酸的吸附动力学可以用Largergren伪二级速率方程很好地拟合,吸附过程是双速过程。1#炭对单宁酸的吸附速率更快,比3#炭具有更高的单宁酸吸附性能。1#和3#炭对单宁酸的吸附活化能依次分别为17.5和3.9 kJ/mol,说明1#炭的反应速率随温度的升高增加得较快,符合Arrhenius的经验方程,吸附反应速率随温度升高而加快的规律,活性炭对单宁酸的吸附可认为是化学吸附。 相似文献
15.
16.
活性炭对甲苯的吸附及其等温线预测 总被引:2,自引:0,他引:2
以微波椰壳活性炭和微波再生后的活性炭吸附甲苯.测定了在20,30和40℃条件下甲苯在活性炭上的吸附等温线,采用Langmuir方程对实验数据进行拟合.结果表明,在30℃下椰壳活性炭和再生活性炭吸附甲苯的理论饱和吸附量分别为0.323 和0.273 g/g;采用Polanyi吸附势理论预测了苯在活性炭上的吸附等温线,其中... 相似文献
17.
18.
19.
20.
由于工业给水处理及饮用水处理大量使用天然水作水源,水中有机物的危害显得十分严重,目前多采用活性炭吸附处理去除水中有机物,这就要选择对水中有机物吸附容量高的活性炭。该文介绍给水处理用活性炭吸附性能指标的研究过程、当前的各种技术观点以及最新研究进展,包括国标提出的水处理用活性炭吸附性能指标(碘值和亚甲兰吸附值),以及用天然水中四种天然有机物(腐殖酸、富里酸、木质素、丹宁)作吸附质来评价活性炭吸附性能,也研究了焦糖脱色率指标。焦糖脱色率指标可以用来很好地表征给水处理用滑『生炭吸附性能,而且具有指标直观、试验方法简单、便于推广应用等特点。 相似文献