首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(14):3712-3731
Abstract

The removal of basic dye crystal violet by low-cost biosorbents was investigated in this study using a batch experimental system. The adsorption of crystal violet onto various adsorbents was solution pH-dependent and the maximum removal occurred at basic pH 10.0. The kinetic experimental data were analyzed using pseudo-first-order and pseudo-second-order equations to examine the adsorption mechanism and the intraparticle diffusion model to identify the potential rate controlling step. These results suggested that the adsorption of crystal violet onto various adsorbents was best represented by the pseudo-second-order equation. The suitability of the Langmuir and Freundich adsorption isotherms to the equilibrium data was also investigated at various temperatures for all four sorbents and the adsorption isotherms exhibited Freundlich behavior. The Freundlich constant Kf was 1.55 for alligator weed, 2.33 for Laminaria japonica, 9.59 for rice bran and 5.38 (mg/g)/(mg/L)1/n for wheat bran, respectively at adsorbent concentration 5 g/L, pH 10.0 and 20°C. The thermodynamic parameters (ΔH, ΔG, and ΔS) were calculated and the results showed that the adsorption process for various adsorbents was spontaneous, endothermic, with an increased randomness, respectively. The particle size and the reaction temperature exhibited an insignificant impact on the adsorption equilibrium of crystal violet. The adsorbents investigated could serve as low-cost adsorbents for removing the crystal violet from aqueous solution.  相似文献   

2.
Cornulaca monacantha stem (CS) and biomass stem-based activated carbon (CSAC) were explored for the removal of congo red (CR) dye from water system. The biomaterial was characterized using Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and field emission scanning electron microscope (FESEM). The BET surface area of biomass stem-based activated carbon (CSAC) was recorded to be 304.27 m2/g. The influence of different parameters such as initial CR concentration, adsorbent dosage, contact time, adsorbate pH and temperature onto CR adsorption were studied.The maximum adsorption of CR dye 97.19% and 86.43% were achieved at 55°C using CSAC and CS adsorbents, respectively. The isotherm, kinetics and thermodynamic study were also investigated to explore the adsorption mechanism. The adsorption isotherm closely follow the Langmuir model (R2 = 0.99) suggesting the monolayer adsorption of CR dye. Kinetic results indicated that pseudo second-order and Elovich model provide the better regression coefficient. Thermodynamic study revealed the feasible, spontaneous and endothermic nature of adsorption process. The regeneration study implies that adsorbent was efficiently recovered from CR dye with 0.01 mol/L NaOH solution. The CSAC adsorbent possesses 75.75% uptake for CR dyes after 6th cycles of desorption-adsorption, respectively. .  相似文献   

3.
Biopolymer-based magnetic beads, composed of kappa-carrageenan (κ-Car) and Fe3O4 nanoparticles, were synthesized. The magnetic beads were prepared through in situ precipitation of Fe2+/Fe3+ ions in the presence of carrageenan and subsequently treating with K+ solution. The structure of magnetic kappa-carrageenan beads (mκ-Carb) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer, and thermal gravimetric analysis techniques. According to SEM micrographs, an undulant and coarse structure with cubic-shaped sections was obtained when the magnetic nanoparticles were incorporated in composition of beads. The TEM image confirmed the formation of magnetic nanoparticles with an average size of 3–7 nm. The synthesized beads were examined as adsorbent to remove crystal violet dye from aqueous solutions. It was found that due to coarse surface, the rate of dye adsorption on magnetic beads can be improved slightly. The experimental adsorption kinetics was analyzed according to pseudo-first-order and pseudo-second-order kinetic models and the adsorption kinetics followed well the pseudo-second-order model. Isotherm adsorption data of dye on beads were modeled according to Langmuir and Freundlich isotherm models. The results revealed that the experimental data have the best fit to Langmuir isotherm model, and maximum adsorption capacity of beads for dye obtained was 84.7 mg/g. The influence of pH on the variation of adsorption capacity of beads for crystal violet was not considerable. The thermodynamic parameters indicated that the adsorption of CV dye on beads is spontaneous.  相似文献   

4.
In this study, activated carbon based on the waste macadamia nut shells (MAC) was investigated for potential use as an adsorbent for phenol removal. The pseudo second-order kinetic model best described the adsorption process. The extent of the phenol adsorption was affected by the pH solution and the adsorbent dosage. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 341 mg g?1. The calculated thermodynamic parameters suggested that the phenol adsorption onto MAC was physisorptive, spontaneous and exothermic in nature. Phenol desorption from loaded adsorbent was achieved by using 0.1 mol L?1 NaOH, ethanol (100 %) and deionized water.  相似文献   

5.
The Acid Black 172 dye adsorption on the uncalcined hydroxyapatite nanopowder was investigated. The hydroxyapatite prepared by wet coprecipitation method has high specific surface area of 325 m2/g and crystal sizes smaller than 70 nm. The batch adsorption experiments revealed that under the optimum adsorption conditions (pH 3, hydroxyapatite dosage 2 g/L, initial dye concentration 400 mg/L and temperature 20 °C) the dye removal efficiency was 95.78% after 1 h of adsorption. The adsorption kinetics was best described by the pseudo-second order kinetic model. The intraparticle diffusion model shows that intraparticle diffusion is not the sole rate-limiting step; the mass transfer also influences the adsorption process in its initial period. The Langmuir isotherm model best represented the equilibrium experimental data, and the maximum adsorption capacity (q m ) was 312.5 mg/g.  相似文献   

6.
BACKGROUND: Calcination significantly increased the adsorption performance of alunite for Acid Red 88. RESULTS: The adsorption properties of calcined alunite for Acid Red 88 were investigated. pH, adsorbent dosage, contact time and ionic strength were found to influence the adsorption. Temperature did not significantly affect the process. Kinetic data obey a pseudo‐second‐order model, while intraparticle diffusion is not the only rate‐limiting step. The Langmuir isotherm well described the equilibrium data. The monolayer adsorption capacity of calcined alunite was found to be 832.81 mg g?1. It was successfully used for the removal of dye in continuous mode at a flow rate of 4.0 mL min?1. Co‐anions affected the adsorption capacity of calcined alunite but the presence of other organic compounds in the same medium did not significantly change the adsorption performance. Reusability studies showed that the calcined alunite can be reused four times. Electrostatic interaction, ion‐exchange and complexation were found to be effective mechanisms for the adsorption of Acid Red 88 by calcined alunite. CONCLUSION: This study demonstrated that calcined alunite has excellent adsorption performance and might be a very good adsorbent for Acid Red 88 as an abundant, economical and practical material. © 2012 Society of Chemical Industry  相似文献   

7.
The feasibility of using tea waste (TW) as a low-cost adsorbent for the adsorption of an anionic dye (Congo red) from aqueous solution has been investigated. Adsorption in a batch process was conducted to study the effect of adsorbent dosage, initial dye concentration, contact time, pH, and temperature. The experimental data were analyzed by the Langmuir, Freundlich, and Temkin models. The adsorption system was best described by the Langmuir isotherm (R 2 > 0.99). Adsorption kinetics followed a pseudo-second-order model (R 2 > 0.99). The effect of mechanical treatment (vibratory mill) was also studied. The experimental results showed that using this physical treatment leads to an increase in the adsorption capacity of TW from 32.26 to 43.48 mg/g. Thermodynamic analyses revealed that the adsorption of Congo red on TW was endothermic and spontaneous in nature. The results indicated that TW can be employed as a potential low-cost adsorbent for the removal of Congo red from aqueous solution.  相似文献   

8.
Adsorption characteristics of four different dyes Safranin O (cationic), Neutral Red (neutral), Congo Red (anionic) and Reactive Red 2 (anionic) on Si-MCM-41 material having very high surface area are reported. The surface morphology of Si-MCM-41 material before and after adsorbing dye molecules are characterised by FTIR, HRXRD, nitrogen adsorption–desorption isotherms, FESEM, and HRTEM. The adsorption capacities of Si-MCM-41 for the dyes followed a decreasing order of NR > SF > CR > RR2. The adsorption kinetics, isotherm and thermodynamic parameters are investigated in detail for these dyes using calcined Si-MCM-41. The kinetics and isotherm data showed that both SF and NR adsorb more rapidly than CR and RR2, in accordance with pseudo-second-order kinetics model as well as intraparticle diffusion kinetics model and Langmuir adsorption isotherm model respectively. The thermodynamic data suggest that the dye uptake process is spontaneous. The high adsorption capacities of dyes on Si-MCM-41 (qm = 275.5 mg g?1 for SF, qm = 288.2 mg g?1 for NR) is explained on the basis of electrostatic interactions as well as H-bonding interactions between adsorbent and adsorbate molecules. Good regeneration capacity is another important aspect of the material that makes it potent for the uptake of dyes from aqueous solution.  相似文献   

9.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

10.
Use of polyester‐type polyurethane foam (PUF) is an effective adsorbent for the removal of hazardous dye: crystal violet (CV) from an aqueous solution. In this adsorption study, the formation of hydrophobic ion pair (opposite charge attraction) between the charged species, i.e., cationic (basic) dye CV and anionic surfactant sodium dodecylsulfate (SDS) sorbed onto PUF. Chemical calculations were performed using quantum simulation to understand ion‐pair formation for CV–SDS at the semiempirical PM6 level. Adsorption studies were performed using 200 mg cylindrical PUF with an overhead stirrer in solutions containing varying compositions of the dye–surfactant mixture. The equilibrium thermodynamics and kinetics of the adsorption process were studies by measuring CV dye removal as a function of time and temperature. Results show that the formation of the dye–surfactant ion pair is necessary for effective adsorption onto PUF. Various adsorption isotherms, viz., Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (DRK), Harkin‐Jura, and several kinetic models, viz., pseudo‐first order, pseudo‐second order, Elovich, and Intraparticle diffusion were used to fit the spectrophotometric result. The equilibrium adsorption data fit to the Langmuir isotherm gives the maximum adsorption of PUF as 33.39 mg g?1 from 200 mL 5.0 × 10?5 mol L?1 CV solution at 298.15 K. The kinetics study showed that the overall adsorption process follows pseudo‐second‐order kinetics. The Morris–Weber model suggests that an intraparticle diffusion process is active in controlling the adsorption rate. The Freundlich, Temkin, DRK adsorption isotherms showed that solute dye transfers from solution to the PUF adsorbent surface through physical adsorption. The Langmuir and Harkin‐Jura adsorption isotherms suggest that the adsorbent surface is homogeneous in nature. The thermodynamic data showed that the adsorption process is spontaneous and endothermic with a positive enthalpy change and a negative change in Gibb's energy.  相似文献   

11.
A series of chitosan (Ch)–graphite oxide (GO)‐modified polyurethane foam (PUF) materials as adsorbents were synthesized by a foaming technique. The adsorbent was characterized through IR spectroscopy, scanning electron microscopy, and thermogravimetric analysis (TGA). Batch adsorption experiments of the cationic dye crystal violet (CV) were carried out as a function of the Ch–GO content (1.0–8.0 wt %), solution pH (2–10), dye concentration (100–300 mg/L), adsorbent dosage (10–60 mg/mL), and temperature (20–45°C). At a lower pH value, the surface of Ch–GO/PUF acquired positive charge by absorbing H+ ions; this resulted in a decreasing adsorption of the cationic CV dye because of electrostatic repulsion. As the pH of the aqueous system increased, the numbers of negatively charged sites increased by absorbing OH ions, and a significantly high electrostatic attraction existed between the negatively charged surface of Ch–GO/PUF and the cationic dye (CV) molecules. This led to maximum dye adsorption. The kinetics, thermodynamics, and equilibrium of CV adsorption onto Ch–GO/PUF were investigated. The equilibrium data for CV adsorption fit the Langmuir equation, with a maximum adsorption capacity of 64.935 mg/g. The adsorption kinetics process followed the pseudo‐second‐order kinetics model. Thermodynamic parameters analysis revealed that the adsorption of CV from an aqueous solution by a Ch–GO modified PUF material was a spontaneous and endothermic process. We concluded that Ch–GO/PUF is a promising adsorbent for the removal of CV from aqueous solutions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41828.  相似文献   

12.
《分离科学与技术》2012,47(14):2240-2251
ABSTRACT

The present investigation represents the synthesis of new p-sulphonatocalix[8]arene-based silica resin, p-SC8SR (5) and its application for the enhanced removal of methylene blue (MB) dye from contaminated water. The new p-SC8SR (5) resin was characterized by FT-IR, SEM, and EDX spectroscopy. The adsorption of MB on p-SC8SR (5) was investigated systematically by evaluating the effects of adsorbent dosage, initial pH, contact time, dye concentration, and ionic strength. Excellent adsorption (94%) of MB on p-SC8SR (5) was achieved at pH 9.5, contact time 10 min by using 0.2 mol L?1 ionic strength and 2 × 10?5 M initial MB dye concentration. Kinetic behavior of MB dye adsorption process on the newly synthesized p-SC8SR (5) adsorbent follows the pseudo-second-order rate model (R2 = 0.998 and 0.999 for 2 × 10?5 M and 1 × 10?4 M, respectively). Adsorption isotherms were fitted well by the Freundlich model with excellent value of coefficient of determination (R2) = 0.995 which demonstrated that the adsorption of MB follows multilayer mechanism. Wastewater samples contaminated with MB were used to assess efficiency of the p-SC8SR (5) adsorbent. Results indicated that newly synthesized p-SC8SR (5) was found to be efficient adsorbent. During the removal process, the role of different functional groups’ cyclic structure was scrutinized and found that the ionic property as well as π–π interaction of host molecules played imperative role in the extent of adsorption.  相似文献   

13.
《分离科学与技术》2012,47(5):742-752
The efficacy of activated carbon prepared from Palm Kernel Shell (PKSAC) from agriculture biomass and coated with magnetic nanoparticle (Fe3O4) in the removal of Rhodamine B dye was investigated. Adsorption experiments were carried out at various initial pH, adsorbent dosage, initial dye concentration, particle size, and temperature. Kinetic analyses were conducted using pseudo first order, pseudo second order and intra particle diffusion models. However, the regression results showed that the adsorption kinetics was represented more accurately by the pseudo second order model. The pseudo second order kinetic constant obtained was 1.7 × 10?4 min?1 at 323 K when 200 mg L?1 dye concentration was used. The equilibrium data were well described by both Langmuir and Freundlich isotherm models. The Langmuir adsorption capacity was 625 mgg?1. The rate of adsorption improved with increasing temperature and the process was endothermic with ΔH value assessed at 80 kJmol?1. Results obtained reveal that activated carbon prepared from Palm Kernel Shell coated with magnetic nanoparticle from agriculture biomass can be an attractive option for dye removal from industrial effluent.  相似文献   

14.
《分离科学与技术》2012,47(3):501-513
Abstract

Activated carbons offer an efficient option for the removal of organic and inorganic contaminants from water. However, due to its high costs and difficulty in the regeneration, other low cost adsorbents have been used. In this work, the adsorption capacity of an adsorbent carbon with high iron oxides concentration was compared with that of a commercial activated carbon in the removal of a leather dye from an aqueous solution. The adsorbents were characterized using SEM/EDAX analysis and BET surface area. The capacity of adsorption of the adsorbents was evaluated through the static method at 25°C. The results showed that the color removal was due to the adsorption and precipitation of the dye on the surface of the solids. The adsorption equilibrium was described according to the linear model for the adsorbent carbon and the equilibrium constant was 0.02 L g?1. The equilibrium of adsorption on activated carbon exhibited a behavior typical of the Langmuir isotherm and the monolayer coverage was 24.33 mg g?1. A mathematical model was proposed to describe the dynamics of the color removal using a fixed bed considering that the color removal is due to the adsorption and the precipitation of the dye on the adsorbent.  相似文献   

15.
BACKGROUND: Water‐soluble reactive azo dyes are the most problematic dye house effluents, as they tend to pass through conventional treatment systems unaffected. The release of these compounds into the environment is undesirable and their removal becomes environmentally important. In this work, synthesis, characterization and sorption properties of hydotalcite‐like compounds (Mg/Al and Mg/Fe), calcined and uncalcined, were investigated for the removal of the reactive azo dye Remazol Red 3BS. RESULTS: The calcined compounds present higher surface area than the uncalcined. The optimum pH for sorption was found to be 6. Thermodynamic analysis reveals that the sorption is spontaneous and endothermic. Equilibrium data were fitted by a Langmuir model, and kinetic data by a second‐order model. The calcined Mg/Al compound showed the highest sorption capacity, at 0.125 mmol g?1. Regeneration of dye loaded derivative is achieved using the surfactant SDS. CONCLUSIONS: The prepared hydotalcite‐like compounds and especially calcined Mg‐Al exhibited significant adsorption capacity, kinetics, and regenerative ability. Its potential applicability as sorbent should be tested in a large‐scale implementation. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

17.
《分离科学与技术》2012,47(6):1382-1403
Abstract

Experimental investigations are carried out to adsorb toxic crystal violet dye from aqueous medium using kaolin as an adsorbent. Characterization of kaolin is done by measuring

  1. particle size distribution using particle size analyzer,

  2. BET surface area using BET surface analyzer,

  3. structural analysis using X ray diffractometer, and

  4. microscopic analysis using scanning electron microscope.

The effects of initial dye concentration, contact time, kaolin dose, stirring speed, pH, and temperature are studied for the adsorption of crystal violet in batch mode. Adsorption experiments indicate that the extent of adsorption is strongly dependent on the pH of the solution. Free energy of adsorption (ΔG o ), enthalpy (ΔH o ), and entropy (ΔS o ) changes are calculated to know the nature of adsorption. The calculated values of ΔG o are ?4.11 and ?4.48 kJ/mol at 295 K and 323 K, respectively, for 20 mg/L of dye concentration, which indicates that the adsorption process is spontaneous. The estimated values of ΔH o and ΔS o show the negative and positive sign, respectively, which indicate that the adsorption process is exothermic and the dye molecules are organized on the kaolin surface in more random fashion than in solution. The adsorption kinetic has been described by pseudo first order, pseudo second order and intra‐particle diffusion models. It is observed that the rate of dye adsorption follows pseudo second order model for the dye concentration range studied in the present case. Standard adsorption isotherms are used to fit the experimental equilibrium data. It is found that the adsorption of crystal violet on kaolin follows the Langmuir adsorption isotherm.  相似文献   

18.
《分离科学与技术》2012,47(3):406-414
ABSTRACT

In this study, Anatolian black pine (ABP, Pinus nigra Arnold.) was evaluated as biosorbent for removal of crystal violet (CV) from aqueous solution. The influence of operational parameters including solution pH, initial CV concentration, biosorbent dosage, contact time, and temperature were studied in batch systems. The adsorption data followed well Langmuir isotherm with a maximum biosorption capacity of 12.36 mg/g. The equilibrium data were better fitted with pseudo-second-order kinetic model (R2 ? 0.99). Moreover, the thermodynamic parameters indicated that the CV biosorption was feasible, spontaneous, and endothermic process. This study showed that ABP (Pinus nigra Arnold.) can be used to remove CV from aqueous solutions.  相似文献   

19.
Experimental investigations were carried out using commercially available kaolin to adsorb two different toxic cationic dyes namely crystal violet and brilliant green from aqueous medium. Kaolin was characterized by performing particle size distribution, BET surface area measurement and XRD analysis. The effects of initial dye concentration, contact time, adsorbent dose, stirring speed, pH, salt concentration and temperature were studied in batch mode. The extent of adsorption was strongly dependent on pH of solution. Free energy of adsorption (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) changes were calculated. Adsorption kinetic was verified by pseudo-first-order, pseudo-second-order and intra-particle-diffusion models. The rate of adsorption of both crystal violet and brilliant green followed the pseudo-second-order model for the dye concentrations studied in the present case. The dye adsorption process was found to be external mass transfer controlled at earlier stage and intra-particle diffusion controlled at later stage. Calculated external mass transfer coefficient showed that crystal violet dye adsorbed faster than brilliant green on kaolin. Adsorption of crystal violet and brilliant green on kaolin followed the Langmuir adsorption isotherm.  相似文献   

20.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号