首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the competitive separation of lead, cadmium, and nickel ions from aqueous solutions using a commercial activated carbon (AC) has been investigated and optimized using response surface methodology (RSM). The optimal conditions to reach the highest adsorption capacity for these metals were found as follows: initial pH = 6.3, temperature = 56.8°C, and shaking speed = 308 rpm. Under these conditions, the sequence of adsorption capacity toward the metal ions was as follows: Pb (II): 9.44 mg g?1 > Cd (II): 9.37 mg g?1 > Ni (II): 4.52 mg g?1. The effect of shaking speed on the adsorption capacity of AC was higher than the effects of the initial pH and temperature, indicating the more important role of physisorption than chemisorption in the adsorption of these metal ions. This was confirmed by the results of thermodynamic studies. The equilibrium adsorption data were fitted to the Freundlich, Langmuir adsorption isotherm models and the Dubinin–Radushkevich model parameters were evaluated. All the models were tested and all were shown to represent the experimental data satisfactorily. The thermodynamic parameters such as ΔH, ΔS, and ΔG were computed from the experimental data. These values show that the adsorption is endothermic and spontaneous. The positive value of ΔS° indicates increasing of randomness at the solid/liquid interface during the adsorption of metal ions on AC.  相似文献   

2.
《分离科学与技术》2012,47(17):2688-2699
Raw and modified biomasses prepared from Padina sp. algae have been used as sorbent for the removal of lead and cadmium from single and binary aqueous solutions. The effects of chemical pretreatment, exposure time, initial solution pH, initial metal concentration, and temperature on the metal uptake by the algae were investigated. It was observed that initial solution pH considerably influenced Pb and Cd uptake. The maximum removal occurred at initial pH of 5.0 for lead and 6.0 for cadmium. Also, alkali modified biomass has been shown to have a high uptake capacity for both lead and cadmium. The kinetic and equilibrium experimental data fitting tested with various models. The pseudo-first-order kinetic model and Langmuir isotherm provided the best correlation of the kinetic and equilibrium experimental data, respectively. The maximum uptake estimated from the Langmuir isotherm was 264 mg g?1 for lead and 164 mg g?1 for cadmium ions. Experimental biosorption data in binary system were well described by the extended Langmuir model. Various thermodynamic parameters, such as ΔG°, ΔH°, and ΔS° were calculated.  相似文献   

3.
《分离科学与技术》2012,47(3):615-644
Abstract

In the present study we reported for the first time, the feasibility of pecan nutshell (PNS-Carya illinoensis) as an alternative biosorbent to remove Cr(III), Fe(III) and Zn(II) metallic ions from aqueous solutions. The ability of PNS to remove these metallic ions was investigated by using batch biosorption procedure. The effects, such as pH and the biosorbent dosage on the adsorption capacities of PNS were studied. Five kinetic models were tested, the adsorption kinetics being the better fitted one to the fractionary-order kinetic model.

The equilibrium data were fitted to Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm models. The maximum biosorption capacity of PNS were 93.01, 76.59, and 107.9 mg g?1 for Cr(III), Fe(III), and Zn(II), respectively.  相似文献   

4.
《分离科学与技术》2012,47(6):960-967
The biosorption of Au(III) and Cu(II) ions in both single and binary systems by Magnetospirillum gryphiswaldense (MSR-1) was investigated. For comparison with the selective reinforced competitive biosorption process in a binary system, the experimental research first explored the biosorption of Au(III) and Cu(II) in a single system under various conditions. The biomass exhibited the highest single Au(III) and Cu(II) ion adsorption yields at room temperature (25°C), pH values of 2.5 and 5.0, respectively, and a biomass concentration of 10 g · L?1 (3.83 g · L?1, dry basis). The experimental data from the single component system for the two metallic ions fitted well to a Langmuir isotherm and a pseudo second-order kinetic models. In the Au(III)-Cu(II) binary system, the coexistence of Cu(II) cations promoted the adsorption of Au(III) within a certain range of ratios. A new sigmoidal Cu(II) biosorption isotherm was determined specifically to reveal the Cu(II) adsorption behavior in this case.  相似文献   

5.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

6.
《分离科学与技术》2012,47(8):1167-1176
The present research is to investigate the possibility of macrofungus Lycoperdon perlatum biomass, which is an easily available, renewable plant, low-cost, as a new biomass for the removal of mercury (Hg(II)) ions from aqueous solutions. The effects of various parameters like pH of solution, biomass concentration, contact time, and temperature were studied by the using the batch method. The Langmuir model adequately described the equilibrium data. The biosorption capacity of the biomass was found to be 107.4 mg · g?1 at pH 6. The mean free energy value (10.9 kJ · mol?1) obtained from the D–R model indicated that the biosorption of Hg(II) onto fungal biomass was taken place via chemical ion-exchange. Thermodynamic parameters showed that the biosorption of Hg(II) onto L. perlatum biomass was feasible, spontaneous, and exothermic in nature. The kinetic results showed that the biosorption of Hg(II) onto fungal biomass followed second-order kinetics. This work also shows that L. perlatum biomass can be an alternative to the expensive materials like ion exchange resins and activated carbon for the treatment of water and wastewater containing mercury ions due to its ability of selectivity and higher biosorption capacity and also being low cost material.  相似文献   

7.
《分离科学与技术》2012,47(1):112-123
The feasibility of using eggshells as a low-cost biosorbent for the removal of Direct Red 28 (DR 28) from aqueous solutions was studied in batch and dynamic flow modes of operation. The effect of biosorption process variables such as particle size, solution pH, initial dye concentration, contact time, temperature, feed flow rate, and bed height were investigated. Both the Langmuir and Freundlich isotherm models exhibited excellent fit to the equilibrium biosorption data. Optimum pH (6.0), particle size (<250 µm), initial dye concentration (50 mg g?1), temperature (313 K), and contact time (240 min) gave maximum monolayer biosorption capacity of 69.45 mg g?1 which was higher than those of many sorbent materials. Pseudo-second-order kinetic model depicted the biosorption kinetics accurately. Thermodynamic study confirmed the spontaneous and endothermic nature of the biosorption process. Breakthrough time increased with increase in the bed height but decreased with increase in flow rate. Overall, batch and continuous mode data suggest the applicability of eggshells as an environment friendly and efficient biosorbent for removal of DR 28 from aqueous media.  相似文献   

8.
In the present work, a new sorbent was successfully prepared by chemically modifying pods of Albizia lebbeck (AL) by Fenton’s reagent, followed by sodium silicate. Sorption studies were carried out by batch process. The optimum pH was found to be 6. Equilibrium isotherm data were analysed by non-linear curve fitting analysis, to fit Langmuir, Freundlich and Temkin isotherm models. Based on the Langmuir isotherm model, maximum monolayer sorption capacity (qm) was found to be 21.22 mg.g?1 at 50°C. Breakthrough and exhaustive capacities were found to be 10 and 50 mg.g?1, respectively. Desorption study showed 95% recovery of Cd(II) ions.  相似文献   

9.
Biomass of the alga Jania adhaerens was used for biosorption of copper ions from aqueous solutions. The effects of pH, copper concentration, biomass amount, and contact time on biosorption were investigated. For chemical modification of functional groups, FTIR and ICP analyses were performed to study the biosorption mechanism. Furthermore, the SEM images of pristine and copper-loaded biomass were also provided. The pseudo second order model described kinetics data appropriately. The adsorption isotherm was best fitted to the Langmuir model with the maximum adsorption capacity of 67 mg g?1. Sulfonate, carboxyl, and amine functional groups affected the biosorption. Ion exchange was a mechanism of biosorption.  相似文献   

10.
BACKGROUND: Biosorption of heavy metals from aqueous solution by modified activated carbon with Phanerochaete chrysosporium immobilised in Ca‐alginate beads was investigated using a batch system and comparison of linear and nonlinear methods. RESULTS: The amount of Cu(II), Zn(II) and Pb(II) ion sorption by the beads was as follows: activated carbon with P. chrysosporium immobilised in Ca‐alginate beads (ACFCA) (193.4, 181.8, 136.6 mg g?1) > activated carbon immobilised in Ca‐alginate beads (ACCA) (174.8, 162.0, 130.7 mg g?1) > P. chrysosporium (F) (148.8, 125.6, 120.4 mg g?1) > activated carbon (AC) (138.8, 112.3, 109.3 mg g?1) > plain Ca‐alginate beads (PCA) (125.4, 105.2, 98.2 mg g?1). The widely used Langmuir and Freundlich isotherm models were utilised to describe the biosorption equilibrium process. CONCLUSION: The results of this study suggest that the immobilisation of modified activated carbon with P. chrysosporium in Ca‐alginate beads is suitable for a batch system. The isotherm parameters were estimated using linear and nonlinear regression analyses. The surface charge density of the biosorbents varied with the pH of the medium; the maximum biosorption of heavy metal ions on the biosorbents was obtained when the pH was between 5.6 and 7.4. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
Two treatments, sodium hydroxide and hydrogen peroxide, were applied to enhance the capacity of fir tree (Abies alba) sawdust to adsorb Cd(II). Fourier transform infrared spectroscopy (FTIR) analysis and atomic force microscopy (AFM) were used to characterize untreated and treated fir tree sawdust. The removal of Cd(II) ions by treated sawdust was dependent on the initial Cd(II) concentration, initial pH, and temperature. Kinetics (pseudo-first-, pseudo-second-order, intra-particle, and film diffusion models) and isotherm models (Langmuir and Freundlich) of the considered biosorption process were examined. The pseudo-second-order model was found to better model the kinetics of Cd(II) adsorption. Maximum adsorption capacities calculated using the Langmuir model are 8.84 and 2.67 mg/g for NaOH and H2O2 treated sawdust, respectively, and 2.20 mg/g for untreated sawdust. The results indicate that the two treatments enhanced the adsorption capacity of the studied sawdust.  相似文献   

12.
《分离科学与技术》2012,47(15):2293-2301
The capacity of Ganoderma lucidum biomass for biosorption of selenium (IV) ions from aqueous solution was studied in a batch mode. In this study the effects of operating parameters such as solution pH, adsorbent dosage, initial metal concentration, contact time, and temperature were investigated. The adsorption capacity of G. lucidum was found to be 126.99 mg g?1. The biosorption follows pseudo-first order kinetics and the isotherms fit well to both Langmuir and Freundlich isotherm models. Isotherms have been used to determine thermodynamic parameters of the process, that is, free energy, enthalpy, and entropy changes. Furthermore, the biosorbent was characterized by scanning electron microscopy and FT-IR analysis. FT-IR analysis of fungal biomass shows the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which were responsible for the biosorption of selenium(IV) ions. The results indicated that the biomass of G. lucidum is an efficient biosorbent for the removal of selenium (IV) ions from aqueous solutions.  相似文献   

13.
《分离科学与技术》2012,47(10):1499-1504
The sorption of Sr2+ ions from aqueous solutions on magnetically modified fodder yeast (Kluyveromyces fragilis) cells and their subsequent desorption were studied. The Sr2+ sorption increased with increasing pH and reached a plateau between pH 4.0 and 7.0. The changes of temperature slightly influenced the sorption process. The sorption values were 19.5 mg g?1 and 53.5 mg g?1 for 10 mg L?1 and 40 mg L?1 Sr2+ solutions respectively after 20 min incubation at a pH higher than 4. The Langmuir isotherm was successfully used to fit experimental data; the maximum adsorption capacity was 140.8 mg g?1 under optimal conditions. The adsorbed Sr2+ ions can be desorbed with nitric acid (0.1 mol L?1).  相似文献   

14.
《分离科学与技术》2012,47(6):997-1004
Equilibrium, thermodynamic, and kinetic studies on the biosorption of Cu(II) using biomass, Trichoderma viride were carried out. The biosorbent was characterized by Fourier transform infrared spectroscopy and Scanning Electron Microscopy. The Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The influence of pH, the biomass dosage, the contact time, the initial metal ion concentration, and the temperature of the solution on the biosorption was studied. The maximum Cu(II) biosorption was attained at pH 5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The maximum biosorption capacity of T. viride biomass was found to be 19.6 mg/g for Cu(II). The kinetic studies indicated that the biosorption of Cu(II) followed the pseudo-second-order model. The calculated thermodynamic parameters, Gibbs-free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) showed that the biosorption of Cu(II) onto T. viride biomass was spontaneous and endothermic. It can be concluded that the T. viride biomass has the potential as an effective and low-cost biosorbent for Cu(II) removal from aqueous solutions.  相似文献   

15.
《分离科学与技术》2012,47(4):923-943
Abstract

The sorption behavior of 2.7×10?5 M solution of Th(IV) ions on 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated. The quantitative sorption was occurred from pH 6 to 9 from acetate buffer solutions. The sorption conditions were optimized with respect to pH, shaking time, and weight of sorbent. The sorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms very successfully at low metal ions concentration. The Freundlich isotherm constant (1/n) is estimated to be 0.22±0.01, and reflects the surface heterogeneity of the sorbent. The Langmuir isotherm gives the maximum monolayer coverage is to be 8.61×10?6 mol g?1. The sorption free energy of the D‐R isotherm was 17.85±0.33 kJ mol?1, suggesting chemisorption involving chemical bonding was responsible for the adsorption process. The numerical values of thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) indicate that sorption is endothermic, entropy driven, and spontaneous in nature. The adsorption free energy (ΔGads) and effective free energy (ΔGeff) are also evaluated and discussed. The effect of different anions on the sorption of Th(IV) ions onto PAN loaded PUF was studied. The possible sorption mechanism on the basis of experimental finding was discussed. A new separation procedure of Th(IV) from synthetic rare earth mixture using batch, column chromatography, and squeezing techniques were reported.  相似文献   

16.
In this work, the pyromellitic dianhydride (PMDA)‐grafted β‐cyclodextrin (β‐CD) microspheres have been prepared for the removal of lead and cadmium metal ions in aqueous solution by a batch‐equilibration technique. The effects of the pH of the solution, contact time, and initial metal concentration were studied. The adsorption capacities for the two metal ions increase significantly as a large number of carboxyl groups are present on the microspheres surface. The equilibrium process is better described by the Langmuir isotherm than the Freundlich isotherm. The maximum adsorption capacities are 135.69 and 92.85 mg g?1 for Pb(II) and Cd(II), respectively. Kinetic studies show good correlation coefficients for a pseudosecond‐order kinetic model, confirming that the sorption rate is controlled by chemical adsorption. The regeneration of the adsorbent can be carried out by treating the loaded microspheres with 0.2 (mol L?1) HCl obtaining high desorption rate for the two metal ions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
《分离科学与技术》2012,47(16):4000-4022
Abstract

The biosorption of Cu(II) and Zn(II) using dried untreated and pretreated Citrus reticulata waste biomass were evaluated. The Cu(II) and Zn(II) sorption were found to be dependent on the solution pH, the biosorbent dose, the biosorbent particle size, the shaking speed, the temperature, the initial metal ions (800 mg/L), and the contact time. Twenty-eight physical and chemical pretreatments of Citrus reticulata waste biomass were evaluated for the sorption of Cu(II) and Zn(II) from aqueous solutions. The results indicated that biomass pretreated with sulphuric acid and EDTA had maximum Cu(II) and Zn(II) uptake capacity of 87.14 mg/g and 86.4 mg/g respectively. Moreover, the Langmuir isotherm model fitted well than the Freundlich model with R 2 > 0.95 for both metal ions. The sorption of Cu(II) and Zn(II) occurred rapidly in the first 120 min and the equilibrium was reached in 240 min. FTIR and SEM studies were also carried out to investigate functional groups present in the biomass and the surface morphological changes of biomass.  相似文献   

18.
《分离科学与技术》2012,47(6):931-940
A method is described for the selective separation and extraction of cadmium-lead from aqueous solutions by tuning the pH value between 1.0 and 7.0. A modified nano-active silica sorbent was loaded with 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide hydrophobic ionic liquid, [Bmim+Tf2N?] and used in this work. The pH value was found to play a significant role in the sorption capacity of Cd(II) and Pb(II). In pH 1.0, the metal capacity values were characterized as 1.40 and 0.30 mmol g?1 for Cd(II) and Pb(II), respectively. In pH 7.0, Cd(II) and Pb(II) switched their capacity values to 0.65 and 1.00 mmol g?1, respectively. An anion exchange mechanism was proposed in solution with pH 1.0 for exchange of chloroanionic cadmium species by [Tf2N?]. The sorptive separation processes of Cd(II) and Pb(II) were studied and evaluated under the influence of various controlling factors. The potential applications of modified nano-silica sorbent for selective sorptive removal and separation of Cd(II) from Pb(II) in water samples was successfully accomplished by adjusting the pH value of the contact solution between 1.0 and 7.0. The results of this study indicated an efficient extraction behavior of the two examined metal ions.  相似文献   

19.
Poly[5,5??-methylene-bis(2-hydroxybenzaldehyde)1,2-phenylenediimine] resin was prepared and characterized by employing elemental, thermal analysis, FTIR, and UV?Cvisible spectroscopy. The metal uptake behavior of synthesized polymer towards Cu(II), Co(II), Ni(II), Fe(III) and Cd(II) ions was investigated and optimized with respect to pH, shaking speed, and equilibration time. The sorption data of all these metal ions followed Langmuir, Freundlich, and Dubinin?CRadushkevich isotherms. The Freundlich parameters were computed 1/n?=?0.31?±?0.02, 0.3091?±?0.02, 0.3201?±?0.05, 0.368?±?0.04, and 0.23?±?0.01, A?=?3.4?±?0.03, 4.31?±?0.02, 4.683?±?0.01, 5.43?±?0.03, and 2.8?±?0.05?mmol?g?1 for Cu(II), Co(II), Ni(II), Fe(III), and Cd(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantity (??H) in the range of 36.72?C53.21?kJ/mol. Using kinetic equations (Morris?CWeber and Lagergren equations), values of intraparticle transport and the first-order rate constant was computed for all the five metals ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination by atomic absorption spectrometer. It was found that the adsorption capacity values for metal-ion intake followed the following order: Cd(II)?>?Co(II)?>?Fe(III)?>?Ni(II)?>?Cu(II).  相似文献   

20.
《分离科学与技术》2012,47(14):2283-2290
Removal of dyes from wastewaters causes a big concern from the environmental point of view due to their extreme toxicity towards aquatic life and humans. Commonly used traditional methods to treat these effluents are ineffective because dyes show resistance to many chemicals, oxidizing agents, and light. In this context, the biosorption process has attracted great attention in recent years since they utilize not only cheap plant materials but also a wide variety of microorganisms as biosorbing agents, displaying a high dye-binding capacity. In this study, biosorption potential of dried Penicillum restrictum (DPR) for Reactive Yellow 145 (RY 145) was studied with respect to pH, equilibrium time, and temperature to determine equilibrium and kinetic models. The most suitable pH and equilibrium time were determined as 1.0 ± 0.05 and 75 min respectively, at a biomass dosage of 0.4 mg L?1 and 20 ± 0.5°C. Data obtained from batch studies fitted well with the Dubinin-Radushkevich (D-R) followed by the Freundlich and Langmuir isotherm models. Maximum uptake capacities (qm) of DPR for the dyestuff (RY 145) were 109.7, 115.2, and 116.5 mg g?1 biomass at temperatures of 20, 30, and 40 ± 0.5°C, respectively. The overall biosorption process was best described by the pseudo-second-order kinetic model. Gibbs free energy changes were calculated as ?384.6, ?273.5, and ?245.9 J mol L?1 at 20, 30, and 40 ± 0.5°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号