首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
《分离科学与技术》2012,47(9-10):2709-2721
Abstract

Electrochemical processing technology is currently being used for the treatment of metallic spent fuel from the Experimental Breeder Reactor-II at Idaho National Laboratory. The treatment of oxide-based spent nuclear fuel via electrochemical processing is possible provided there is a front-end oxide reduction step. During this reduction process, certain fission products, including Cs and Sr, partition into the salt phase and form chlorides. Both solid state and molten LiCl-zeolite-A ion exchange tests were conducted for selectively removing Cs and Sr from LiCl-based salt. The solid-state tests produced in excess of 99% removal of Cs and Sr. The molten state tests failed due to phase transformation of the zeolite structure when in contact with the molten LiCl salt.  相似文献   

2.
For the first time, the possibility of dissolution of spent nuclear fuel from a nuclear power plant in liquid and supercritical carbon dioxide was demonstrated. As shown by the example of spent nuclear fuel, the dissolution and the extraction of actinides and fission products by solutions of tributyl phosphate and nitric acid adducts TBP(HNO3)1.8 in carbon dioxide can be used as one of the stages of spent nuclear fuel reprocessing.  相似文献   

3.
The reduction path of the U3O8 powder vol-oxidized at 1200 °C has been determined by a series of electrochemical experiments in a 1 wt.% Li2O/LiCl molten salt. Various reaction intermediates are observed by during electrolysis of U3O8. The formation of the metallic uranium is caused from two different reduction paths, a direct reduction of uranium oxide and an electro-lithiothermic reduction. As the uranium oxide is converted to the metallic uranium, the lithium metal is more actively formed in the cathode basket. The reducibility of the rare earth oxides with the U3O8 powder has been tested by constant voltage electrolysis. The results suggest the advanced vol-oxidation could lead to the enhancement in the reducibility of the rare earth fission products.  相似文献   

4.
The catalytic conversion of N2O to N2 in the presence or the absence of propene and oxygen was studied. The catalysts examined in this work were synthesized impregnating metals (Rh, Ru, Pd, Co, Cu, Fe, In) on different supports (Al2O3, SiO2, TiO2, ZrO2 and calcined hydrotalcite MgAl2(OH)8·H2O). The experimental results varied both with the type of the active site and with the type of the support. Rh and Ru impregnated on -alumina exhibited the highest activity. The performance of the above most promising catalysts was studied using various hydrocarbons (CH4, C3H6, C3H8) as reducing agents. These experimental results showed that the type of reducing agent does not affect the reaction yield. The temperature where complete conversion of N2O to N2 was measured was independent of the reductant type. The activity of the most active catalysts was also measured in the presence of SO2 and H2O in the feed. A shift of the N2O conversion versus temperature curve to higher temperatures was observed when SO2 and H2O were added, separately or simultaneously, to the feed. The inhibition caused by SO2 was attributed to the formation of sulfates and that caused by water to the competitive chemisorption of H2O and N2O on the same active sites.  相似文献   

5.
EXAFS has been used to follow in situ the structural evolution of a chlorinated and non-chlorinated Pt/Al2O3 catalyst during reduction in the temperature range of 300–500 °C. Smaller metal clusters are formed from the hydrogen reduction of the chlorinated catalyst, in contrast to the larger cluster formed from the non-chlorinated one. At 460 °C, the total hydrogen pressure was raised to 5 atm. and n-heptane was injected over the samples. EXAFS measurements at the Pt edge were carried out while hydrocarbon conversion was monitored with a gas Chromatograph. We observe the rapid formation of a carbon-platinum bond. This is unmodified while turnover rates and selectivities indicate evidence for deactivation. From this structural information supplied by EXAFS, correlated with the data obtained from gas chromatography, we find that our results are consistent with a model proposed by others where deactivation is due to the build-up of a multilayer of carbon.  相似文献   

6.
New hydrotalcite-like materials containing magnesium, chromium, and/or iron were synthesized by the coprecipitation method and then thermally transformed into mixed metal oxides. The obtained catalysts were characterized with respect to chemical composition (XRF), structural (XRD, Mössbauer spectroscopy) and textural (BET) properties. The catalytic performance of the hydrotalcite-derived oxides was tested in the N2O decomposition and the N2O reduction by ethylbenzene. An influence of N2O/ethylbenzene molar ratio on the process selectivity was studied. The relationship between catalytic performance and structure of catalysts was discussed.  相似文献   

7.
《分离科学与技术》2012,47(8):1175-1180
Abstract

A supercritical CO2 (Sc-CO2) extraction procedure to recover volatile compounds and polyphenols from Rosa damascena is investigated. It consists of two steps: the first by Sc-CO2 at 16 MPa and 313.15 K and on-line fractionation using two separators (S1: 7 MPa/ 298.15 K; S2: 5 MPa/ 288.15 K) for volatile compounds, the second by Sc-CO2 added with 10% ethanol-water mixture (57% v/v) at 8 MPa and 313.15 K for polyphenols. Sc-CO2 extract obtained in S2 resulted of high quality compared with essential oil. Polyphenol yield by SC-CO2 added with co-solvent resulted about 80 % of methanol extraction (3250 mg GAE/100 g dw).  相似文献   

8.
The direct selective separation of the trivalent actinides americium and curium from a simulated Plutonium Uranium Refining by EXtraction (PUREX) raffinate solution by a continuous counter-current solvent extraction process using miniature annular centrifugal contactors was demonstrated on a laboratory scale. In a 32-stage spiked test (12 stages for extraction, 16 stages for scrubbing, and 4 stages for Am/Cm stripping), an extractant mixture of CyMe4BTBP and TODGA in a TPH/1-octanol mixture was used. The co-extraction of some fission and corrosion product elements, such as zirconium and molybdenum, was prevented by using oxalic acid. Co-extracted palladium was selectively stripped using an L-cysteine scrubbing solution and the trivalent actinides were selectively stripped using a glycolic acid-based stripping solution. It was demonstrated that a selective extraction and high recovery of > 99.4% of the trivalent minor actinides was achieved with low contamination by fission and corrosion products. The product contained 99.8% of the initial americium and 99.4% of the initial curium content. The spent solvent still contained high concentrations of Cu, Cd, and Ni. The experimental steady-state concentration profiles of important solutes were determined and compared with those from computer-code calculations.  相似文献   

9.
The addition of Na and S into alumina catalysts brought about a decrease in the catalytic activity for the reduction of NO with ethane in excess oxygen. Aluminas containing Na or S in different amounts were subjected to activity tests for the related reactions to elucidate the causes of the suppressive effects of the addition of Na and S on the reduction of NO. The reactions taken as test reactions were the oxidation of NO with oxygen, the reaction of NO2 with ethene in the absence of oxygen, and the reaction of ethene with oxygen. The addition of Na suppressed the oxidation of NO, and the reaction of NO2 with ethene to form N2, but promoted the reaction of ethene with oxygen to a great extent. The addition of Na also caused the formation of NO in the reaction of NO2 with ethene. The changes which the addition of Na brought about are all unfavorable directions for the reduction of NO. The most important effect of the addition of Na on the decrease in the reduction of NO is suggested to be due to the enhancement of the reaction of ethene with oxygen. The addition of S suppressed the oxidation of NO to a great extent, but did not affect much the reaction of ethene with oxygen. Like the case of the Na addition, the addition of S caused the formation of NO in the reaction of NO2 with ethene.  相似文献   

10.
In this article, it was investigated whether potentially low-cost CO2 capture from SOFC systems could enhance the penetration of SOFC in the energy market in a highly carbon-constrained society in the mid-term future (up to year 2025). The application of 5 MWe SOFC systems for industrial combined heat and power (CHP) generation was considered. For CO2 capture, oxyfuel combustion of anode off-gas using commercially available technologies was selected. Gas turbine (GT-) CHP plant was considered to be the reference case.Technical results showed that despite the energy penalties due to CO2 capture and compression, net electrical and heat efficiencies were nearly identical with or without CO2 capture. This was due to higher heat recovery efficiency by separating SOFC off-gas streams for CO2 capture. However, CO2 capture significantly increased the required SOFC and heat exchanger areas.Economic results showed that for above 40-50 $ t−1 CO2 price, SOFC-CHP systems were more economical when equipped with CO2 capture. CO2 capture also enabled SOFC-CHP to compete with GT-CHP at higher cell stack production costs. At zero CO2 price, cell stack production cost had to be as low as 140 kW−1 for SOFC-CHP to outperform GT-CHP. At 100 $ t−1 CO2 price, the cell stack production cost requirement raised to 350 $ kW−1. With CO2 capture, SOFC-CHP still outperformed GT-CHP at a significantly higher cell stack production cost above 900 $ kW−1.  相似文献   

11.
12.
Annual cycles of NO, NO2 and N2O emission rates from soil were determined with high temporal resolution at a spruce (control and limed plot) and beech forest site (Höglwald) in Southern Germany (Bavaria) by use of fully automated measuring systems. The fully automated measuring system used for the determination of NO and NO2 flux rates is described in detail. In addition, NO, NO2 and N2O emission rates from soils of different pine forest ecosystems of Northeastern Germany (Brandenburg) were determined during 2 measuring campaigns in 1995. Mean monthly NO and N2O emission rates (July 1994–June 1995) of the untreated spruce plot at the Höglwald site were in the range of 20–130 µg NO-N m-2 h-1 and 3.5–16.4 µg N2O-N m-2 h-1, respectively. Generally, NO emission exceeded N2O emission. Liming of a spruce plot resulted in a reduction of NO emission rates (monthly means: 15–140 µg NO-N m-2 h-1) by 25-30% as compared to the control spruce plot. On the other hand, liming of a spruce plot significantly enhanced over the entire observation period N2O emission rates (monthly means: 6.2–22.1 µg N2O-N m-2 h-1). Contrary to the spruce stand, mean monthly N2O emission rates from soil of the beech plot (range: 7.9–102 µg N2O-N m-2 h-1) were generally significantly higher than NO emission rates (range: 6.1–47.0 µg NO-N m-2 h-1). Results obtained from measuring campaigns in three different pine forest ecosystems revealed mean N2O emission rates between 6.0 and 53.0 µg N2O-N m-2 h-1 and mean NO emission rates between 2.6 and 31.1 µg NO-N m-2 h-1. The NO and N2O flux rates reported here for the different measuring sites are high compared to other reported fluxes from temperate forests. Ratios of NO/N2O emission rates were >> 1 for the spruce control and limed plot of the Höglwald site and << 1 for the beech plot. The pine forest ecosystems showed ratios of NO/N2O emission rates of 0.9 ± 0.4. These results indicate a strong differentiating impact of tree species on the ratio of NO to N2O emitted from soil.  相似文献   

13.
This paper reviews the properties and application of di-methyl ether (DME) as a candidate fuel for compression-ignition engines. DME is produced by the conversion of various feedstock such as natural gas, coal, oil residues and bio-mass. To determine the technical feasibility of DME, the review compares its key properties with those of diesel fuel that are relevant to this application. DME’s diesel engine-compatible properties are its high cetane number and low auto-ignition temperature. In addition, its simple chemical structure and high oxygen content result in soot-free combustion in engines. Fuel injection of DME can be achieved through both conventional mechanical and current common-rail systems but requires slight modification of the standard system to prevent corrosion and overcome low lubricity. The spray characteristics of DME enable its application to compression-ignition engines despite some differences in its properties such as easier evaporation and lower density. Overall, the low particulate matter production of DME provides adequate justification for its consideration as a candidate fuel in compression-ignition engines. Recent research and development shows comparable output performance to a diesel fuel led engine but with lower particulate emissions. NOx emissions from DME-fuelled engines can meet future regulations with high exhaust gas recirculation in combination with a lean NOx trap. Although more development work has focused on medium or heavy-duty engines, this paper provides a comprehensive review of the technical feasibility of DME as a candidate fuel for environmentally-friendly compression-ignition engines independent of size or application.  相似文献   

14.
Carbon materials particularly in the form of sparkling diamonds have held mankind spellbound for centuries, and in its other forms, like coal and coke continue to serve mankind as a fuel material, like carbon black, carbon fibers, carbon nanofibers and carbon nanotubes meet requirements of reinforcing filler in several applications. All these various forms of carbon are possible because of the element's unique hybridization ability. Graphene (a single two-dimensional layer of carbon atoms bonded together in the hexagonal graphite lattice), the basic building block of graphite, is at the epicenter of present-day materials research because of its high values of Young's modulus, fracture strength, thermal conductivity, specific surface area and fascinating transport phenomena leading to its use in multifarious applications like energy storage materials, liquid crystal devices, mechanical resonators and polymer composites. In this review, we focus on graphite and describe its various modifications for use as modified fillers in polymer matrices for creating polymer-carbon nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号