首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

2.
Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles   总被引:1,自引:0,他引:1  
Due to rapid industrialisation, the presence of heavy metals in water and wastewater is a matter of environmental concern. Though some of the metals are essential for our system but if present beyond their threshold limit value (TLV), they are harmful and their treatment prior to disposal becomes inevitable. The present communication has been addressed to the removal of Cr(VI) from aqueous solutions by nanoparticles of iron. Nanoparticles of iron were prepared by sol–gel method. The characterisation of the nanoparticles was carried out by XRD and TEM analysis. Batch experiments were adopted for the adsorption of Cr(VI) from its solutions. The effect of different important parameters such as contact time and initial concentration, pH, adsorbent dose, and temperature on removal of chromium was studied. The removal of chromium increased from 88. 5% to 99.05% by decreasing its initial concentration from 15 to 5 mg L?1 at optimum conditions. Removal of Cr(VI) was found to be highly pH dependent and a maximum removal (100%) was obtained at pH 2.0. The process of removal was governed by first and pseudo‐second‐order kinetic equations and their rate constants were determined. The process of removal was also governed by intraparticle diffusion. Values of the thermodynamic parameters viz. ΔG°, ΔH°, and ΔS° at different temperatures were determined. The data generated in this study can be used to design treatment plants for chromium rich industrial effluents. Adsorption results indicate that nanoiron particles can be effective for the removal of chromium from aqueous solutions.  相似文献   

3.
The aim of this research was to investigate the sorption characteristics of polyaniline coated on sawdust (PAn/SD) for the removal of Cr(VI) ions from aqueous solutions. The sorption of Cr(VI) ions was carried out by the batch method. Characterization of PAn/SD was done by FTIR and SEM. The optimum conditions of sorption were found to be a PAn/SD dose of 0.6 g in 100 mL of Cr(VI) solution (50 mg/L), a contact time of 20 min, pH 2, and a temperature of 20°C, Increased temperature had a negative effect on the removal efficiency. Three equations, that is Morris–Weber, Lagergren, and pseudo‐second‐order, were tested to track the kinetics of the removal process. The kinetic data indicated that the adsorption process was described by the Morris–Weber equation. The Langmuir, Freundlich, and Dubinin–Radushkevick models were used with sorption data to estimate sorption capacity, intensity, and energy. The data were fitted with the Freundlich model. The thermodynamic parameters ΔH, ΔS, and ΔG were evaluated. They showed that the adsorption of Cr(VI) onto PAn/SD was feasible, spontaneous, and exothermic under the studied conditions. For desorption of Cr(VI) adsorbed onto PAn/SD, aqueous NaOH was used; with it, 85% of the adsorbed Cr(VI) could be desorbed. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Modified chitosan beads (CB) were prepared and used for the removal of Fe(III) ions from aqueous solution. The advantages of modified CB than raw CB have been explored. The sorption capacity (SC) of the modified forms of CB namely, protonated CB, carboxylated CB, and grafted CB were found to be 3533, 3905, and 4203 mg kg?1, respectively, while the raw CB showed the SC of 2913 mg kg?1 only. Batch adsorption studies were conducted to optimize various equilibrating conditions like contact time, pH, and coions. The sorbents were characterized by FTIR, WDXRF, and SEM with EDAX analysis. The sorption process has been explained with Freundlich and Langmuir isotherms. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated to understand the nature of sorption. Modified CB are more selective for Fe(III) than Cu(II), which inturn higher than Cr(VI). A suitable mechanism for iron sorption onto modified CB was established. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Wastewater containing low levels of pollutants can be effectively treated by the adsorption technique. In the present work, an adsorption study was carried out using chitosan as adsorbent in a fixed-bed column for the removal of Cr(VI) from wastewater solutions. The column performance of Cr(VI) adsorption onto chitosan was studied at different bed heights (3–9 cm), flow rates (50–200 mL/min), initial metal concentrations (2–10 mg/L), pH values (2–7), and temperatures (30°–60°C). The equilibrium data for the batch adsorption of Cr(VI) on chitosan were tested using the Langmuir, Freundlich, and BET isotherm models. The Langmuir model was found to be the most suitable, with a maximum adsorption capacity of 35.7 mg/g and a correlation coefficient (R 2) = 0.952. The experimental data were found to fit well with the pseudo-second-order kinetic model, with R 2 = 0.999. The dynamics of the adsorption process was modeled using the Adams-Bohart, Thomas, and mass transfer models. The models were used to predict the breakthrough curves of adsorption systems and to determine the characteristic design parameters of the column. The adsorption data were observed to fit well with all three models. The model parameters were derived using MATLAB software. In order to compare quantitatively the applicability of adsorption dynamic models in fitting to experimental data, the percentage relative deviation (P) was calculated and found to be less than 5, confirming that the fit is good for all three models.  相似文献   

6.
《分离科学与技术》2012,47(4):486-496
The efficacy of treated Shorea dasyphylla bark for Cu(II) and Cr(VI) adsorption was assessed in a batch adsorption system as a function of pH, agitation period, and initial metal concentration. The equilibrium nature of Cu(II) and Cr(VI) adsorption was described by the Freundlich, Langmuir, and Dubinin-Radushkevich isotherms. The maximum monolayer capacities of treated Shorea dasyphylla bark, estimated from the Langmuir equation were 184.66 and 42.72 mg/g for Cu(II) and Cr(VI), respectively. The experimental results were fitted using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models; the pseudo-second order showed the best conformity to the kinetic data. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined by applying the Van't Hoff equation. The adsorption of Cu(II) and Cr(VI) onto treated Shorea dasyphylla bark was found to be spontaneous and exothermic. The adsorption mechanism was confirmed by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The dimensionless constant separation factor (R L), indicated that treated Shorea dasyphylla bark was favorable for Cu(II) and Cr(VI) adsorption.  相似文献   

7.
The sorption behavior of Th(IV) and U(VI) species on two batch molds of radiation‐induced polymerized unsaturated polyester beads containing 40 wt % styrene was investigated. The distribution coefficients of both ions on the polymeric sorbents were evaluated at 30°C using 10?4 M solution and found to be 271.9 and 469.8 mL/g on the first mold and 296 and 1189.2 mL/g on the second mold for Th(VI) and U(IV), respectively. Testing the sorption data using different theories provided evidence that the sorption data accurately fit the Langmuir, Freundlich, and D‐R isotherms, indicating chemisorption occurred and that E, the mean sorption energy of thorium and uranium on the different molds of unsaturated polyester–styrene, was between 8.304 and 13.92 kJ/mol, reflecting the nature of the ion exchange. The thermodynamics of sorption were considered in order to evaluate ΔH, ΔS, and ΔG. The data showed that the sorption process was spontaneous and exothermic. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4098–4106, 2006  相似文献   

8.
Biological sources are renewable basic resources that may be used for several purposes, including the development of green materials for the removal of heavy metal ions. Cellulose nanocrystals (CNCs) extracted from waste papers via acid hydrolysis were modified and utilized as adsorbents to remove Cr (VI) ions from metallurgical effluent in this work. X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and zeta potentiometer were used to characterize the CNCs. The CNCs treated with succinic anhydride and ethylenediaminetetraacetic acid tetrasodium salt have thin particle sizes and are porous. The carboxylate functional group is primarily engaged in the coordination and selective removal of metal ions (–COO2−) and thermal degradation of 85%, observed at temperatures between 250–380°C. On the surface of the modified CNCs, the zeta potential data showed a decrease in negative value. The results revealed that the modified CNCs had a maximum adsorption capacity of 387.25 ± 0.88 mg L−1 at pH 5, at CNCs doses of 25 and 400 mg L−1 as starting concentrations. The adsorption equilibrium period was 300 min and the temperature was 313 K. The equilibrium results fit the Langmuir isotherm model with an R2 of 0.993 and a qmax of 340 ± 0.97. The Chi-square (X2) and Marquardt's percent standard deviation tests confirmed that the adsorption process was pseudo-second-order with an R2 of 0.998, and the Elovich model revealed that Cr (VI) complexed with the adsorbent's functional groups. The reaction was endothermic due to positive ΔH and spontaneous due to negative ΔG. The positive ΔS indicates that the adsorption process enhances the unpredictability of the solid/liquid interface, according to thermodynamic analysis. After acid treatment, the CNCs may be effectively reused for six cycles with an adsorption capacity of 220 ± 0.78 mg g−1.  相似文献   

9.
Abstract

The Na-P1 zeolite was produced from coal fly ash and modified with different environmental friendly surfactants. The potential of these green modified zeolites was investigated as adsorbents for Cr(VI) ions in a batch system. XRD, SEM, XRF, and ICP-AES analyses were used for the characterization of raw materials and zeolite samples. The environmental friendly modified zeolites successfully immobilized different toxic elements in their framework inhibiting the transfer of these toxic elements to the surrounding liquid phase. The effects of various operational parameters on Cr(VI) removal were studied. The Hexamethylenediamine (HDTMA) and Ammonyx KP (KP) modified zeolites had larger chromium removal potential than the other samples at all temperatures. The effectiveness of Cr(VI) ions elimination became greater as the pH decreased and the adsorbent dose increased. The Freundlich, Langmuir, and Dubinin–Radushkevich isotherms were fitted to the equilibrium data. The Dubinin–Radushkevich and Langmuir models gave a better fitness to equilibrium data of HDTMA-Na-P1 and KP-Na-P1, respectively. The positive and high ΔH° values showed the endothermic nature of the total Cr(VI) sorption procedure and indicated that Cr(VI) adsorption onto HDTMA-Na-P1 and KP-Na-P1 is a chemisorption. The negative ΔS° values also showed that chromium ions were stable on the surface of adsorbents. The adsorption potential of the developed eco-friendly KP-Na-P1 was higher than those of other adsorbents reported in the literature.  相似文献   

10.
《分离科学与技术》2012,47(5):681-686
The Sphingomonas paucimobilis biomass has been successfully utilized to degrade several persistent organic pollutants (POPs). However, few studies have been conducted to use it to remove heavy metals from aqueous solutions. In the present study, biosorption experiments for Cr (VI) were investigated using nonliving biomass of S. paucimobilis isolated from activated sludge, Lianyungang Dapu sewage treatment plant, China. The effects of several parameters including solution pH, contact time, and ionic strength, etc. on Cr (VI) uptake were studied. The biomass was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS) and Fourier transform infrared spectrometer (FTIR). The applicability of the Langmuir and Freundlich models was tested. The correlation coefficients (R) of both models were greater than 0.95. The maximum adsorption capacities were found to be 28.5 mg/g for Cr (VI) at 20°C. The adsorption process was quick and found to follow the pseudo-second-order equation. The optimum adsorption was achieved at pH 2. The adsorption was also NaCl concentrations dependent.  相似文献   

11.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

12.
Poly(barbituric acid) functionalized magnetic nanoparticles with excellent adsorption behavior were facilely synthesized through one‐step chemical oxidation polymerization method by using sodium borohydride as the reducing agent. Structure, morphology, and magnetism of the products were thoroughly investigated by means of FTIR, FESEM, EDX, X‐ray photoelectron spectra, thermogravimetric analyzer–differential scanning calorimetry, and vibrating sample magnetometer. The products were of a sphere‐shaped nanostructure with the saturation magnetization value of 7.5 emu g?1, which make them reusable for adsorption application. Removal capability for heavy metal ions were systematically evaluated using Pd (II) and Cu (II) ions as the models. The maximum sorption capacities by applying the Langmuir equation were calculated to be 166.6 mg/g for Cu (II) and 142.8 mg/g for Pb (II). A recycle test revealed that the PBA‐MNPs have above 87.1% for Cu (II) and 82.69% for Pb (II) ion desorption efficiency after the three regeneration cycle process. All the above experimental results demonstrated that barbituric acid‐based material could be used as a possible adsorbent for the efficient removal of heavy metals from aqueous solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40957.  相似文献   

13.
The adsorption of Cr (VI) from aqueous solution onto nanoparticles hematite (α-Fe2O3) of different morphologies synthesized by acid hydrolysis, transformation of ferrihydrite, sol gel methods has been investigated. The hematite particle sizes were in the range 15.69-85.84 nm and exhibiting different morphologies such as hexagonal, plate-like, nano-cubes, sub-rounded and spherical. The maximum adsorption capacity of Cr (VI) was found to be in the range 6.33–200 mgg?1 for all hematite samples. The kinetics of sorption was rapid, reaching equilibrium at 45–240 minutes. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. The rate constants were in the range 0.996–2.37×10?2 g/mg/min for all samples. The maximum adsorption was attained at pH 3.0, while adsorption decreased as the pH increased from pH 3.0 to 10.0. The study revealed that the hematite with plate-like morphology has the highest adsorption capacity. The sorption process has been found to be feasible following a chemisorption process, and adsorption of Cr (VI) onto hematite nanoparticles was by inner sphere surface complexation due to low desorption efficiency in the range 9.54–53.4%. However, the result of ionic strength revealed that the reaction was by outer sphere complexation. This study showed that morphologies play a vital role in the adsorption capacities of samples of hematite in the removal of Cr (VI) from aqueous solution.  相似文献   

14.
《分离科学与技术》2012,47(2):290-299
A novel adsorbent: Fe2+-modified vermiculite was prepared in a two-step reaction. Adsorption experiments were carried out as a function of pH, contact time, and concentration of Cr(VI). It was found that Fe2+-modified vermiculite was particularly effective for the removal of Cr(VI) at pH 1.0. The adsorption of Cr(VI) reached equilibrium within 60 min, and the pseudo-second-order kinetic model best described the adsorption kinetics. The adsorption data follow the Langmuir model more than the Freundlich model. At pH 1.0, the maximum Cr(VI) sorption capacity (Q max ) was 87.72 mg · g?1. Desorption of Cr(VI) from Fe2+-modified vermiculite using NaOH treatment exhibited a higher desorption efficiency by more than 80%. The sorption mechanisms including electrostatic interaction and reduction were involved in the Cr (VI) removal. The results showed that Fe2+-modified vermiculite can be used as a new adsorbent for Cr(VI) removal which has a higher adsorption capacity and a faster adsorption rate.  相似文献   

15.
《分离科学与技术》2012,47(18):2843-2851
A novel adsorbent, chufa corm peels (CCP), is used for removing Cu(II), Cr(III), and Cr(VI) from aqueous solutions. The adsorption ability and characteristics of the CCP are thoroughly investigated. The adsorption capability for three heavy metal ions is in the order of Cu(II) > Cr(III) > Cr(VI). The morphology and elemental distribution on the biomass of CCP were evaluated by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Fourier-transform infrared spectroscopy (FTIR) analysis revealed that oxygen-containing functional groups, especially carboxylic and hydroxyl groups were responsible for chemical coordination between ionizable functional groups and metal ions. The adsorption features were evaluated based on the batch biosorption experiment. The results showed that the adsorption well meets the Freundlich adsorption isotherm models and pseudo-second-order kinetics model. In summary, this work demonstrated that CCP is an attractive, efficient, and low-cost adsorbent biomaterial that can be used for the removal of heavy metals from environmental contaminations.  相似文献   

16.
Activated carbon/chitosan composite has been used as an adsorbent to remove aniline and Cr(VI) ions from aqueous solutions simultaneously. The effects of preparation conditions such as the ratio of activated carbon to chitosan, crosslinking reagents, crosslinking time, and adsorption conditions including adsorbent dosage, pH value of solution, and contact time on simultaneous adsorption of aniline and Cr(VI) ion were investigated. Experimental results showed that epichlorohydrin was the proper crosslinking reagent, and the ratio of activated carbon to chitosan was kept at 1. When the adsorbent dosage was 4.0 g/L, and the concentrations of aniline and Cr(VI) were lower than 50 and 100 mg/L, respectively, both aniline and Cr(VI) were simultaneously removed at natural pH with high removals (>95%). The presence of Cr(VI) enhanced the adsorption of aniline, while the presence of aniline almost had no influence on the adsorption of Cr(VI). The adsorption processes of both aniline and Cr(VI) followed the pseudo‐second‐order kinetics model, but the sorption of Cr(VI) was preferential to that of aniline by this composite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39903.  相似文献   

17.
A novel, bioadsorbent material of polyethylenimine‐modified magnetic chitosan microspheres enwrapping magnetic silica nanoparticles (Fe3O4–SiO2–CTS‐PEI) was prepared under relatively mild conditions. The characterization results indicated that the adsorbent exhibited high acid resistance and magnetic responsiveness. The Fe3O4 loss of the adsorbent was measured as 0.09% after immersion in pH 2.0 water for 24 h, and the saturated magnetization was 11.7 emu/g. The introduction of PEI obviously improved the adsorption capacity of Cr(VI) onto the adsorbent by approximately 2.5 times. The adsorption isotherms and kinetics preferably fit the Langmuir model and the pseudo‐second‐order model. The maximum adsorption capacity was determined as 236.4 mg/g at 25°C, which was much improved compared to other magnetic chitosan materials, and the equilibrium was reached within 60 to 120 min. The obtained thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption process. Furthermore, the Cr(VI)‐adsorbed adsorbent could be effectively regenerated using a 0.1 mol/L NaOH solution, and the adsorbent showed a good reusability. Due to the properties of good acid resistance, strong magnetic responsiveness, high adsorption capacity, and relatively rapid adsorption rate, the Fe3O4–SiO2–CTS‐PEI microspheres have a potential use in Cr(VI) removal from acidic wastewater. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43078.  相似文献   

18.
In this research, novel nanoparticles of Kit-6 mesoporous silica magnetite were synthesized with 9.6 nm pore diameter and 241.68 m2 g?1 surface area. The synthesized mesoporous magnetite nanoparticles (MMNPs) were functionalized with amine groups. Scanning electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy and nitrogen adsorption–desorption method confirmed the morphology and structure of the synthesized nanoparticles. The amine functionalized MMNPs were used for sorption of toxic chromate ions from aqueous samples. The effect of various experimental parameters (four factors at three levels) on the sorption efficiency of Cr(VI) was studied and optimized via Taguchi L9 (34) orthogonal array experimental design. At optimum conditions, the sorption of the Cr(VI) was best described by a pseudo second-order kinetic model with R2 = 0.9999 and qeq = 129.8 mg g?1, suggesting chemisorption mechanism. Adsorption data were fitted well to the Langmuir isotherm and the synthesized sorbent showed complete ion removal with 185.2 mg g?1sorption capacity.  相似文献   

19.
Batch adsorption experiments were carried out to remove heavy metal ions such as Cu (II), Ni (II), Cd (II), and Cr (VI) from single‐metal solutions using a polyaniline/palygorskite (PP) composite. Different parameters affecting the adsorption capacity such as contact time and pH of the solution have been investigated. The structural characteristics of the PP composite were studied in this work. Atomic absorption spectroscopy was used for the measurement of heavy metal contents, and the adsorption capacity (qe) calculated were 114 mg Cu (II) g?1, 84 mg Ni (II) g?1, 56 mg Cd (II) g?1, and 198 mg Cr (VI) g?1 under optimal conditions. The removal of the metal ions from solutions was assigned to chelation, ionic exchange, and electrostatic attraction. Data from this study proved that the novel organic/inorganic composite presents great potential in the recovery and elimination of noble or heavy metal ions from industrial wastewater. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

20.
This article describes a single-step reproducible approach for the surface modification of micrometer-sized polystyrene (PS) core particles to prepare electromagnetic PS/polyaniline–Fe3O4 (PS/PANi–Fe3O4) composite particles. The electromagnetic PANi–Fe3O4 shell was formed by simultaneous seeded chemical oxidative polymerization of aniline and precipitation of Fe3O4 nanoparticles. The weight ratio of PS to aniline was optimized to produce core–shell structure. PS/PANi–Fe3O4 composite particles were used as adsorbent for the removal of Cr(VI) via anion-exchange mechanism. The composite particles possessed enough magnetic property for magnetic separation. The adsorption was highly pH dependent. Adsorption efficiency reached 100% at pH 2 in 120 min when 0.05 g of composite particles was mixed with 30 mL 5 mg L−1 Cr(VI) solution. The adsorption isotherm fitted best with Freundlich model and maximum adsorption capacity approached 20.289 mg g−1 at 323 K. The prepared composite was found to be an useful adsorbent for the removal of soluble Cr(VI) ions. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47524.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号