首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(8):1433-1445
Abstract

The extraction behavior of precious metals (PMs) from HCl media has been studied using trioctylamine (TOA) in kerosene. The extraction sequence of PMs was found to be Au(III) > Pd(II), Pt(IV), Ir(IV) > Ir(III). Ru. Transport of PMs was performed through a supported liquid membrane (SLM) impregnated with TOA as a mobile carrier from the HCl feed solution into the HClO4 or HNO3 product solution. Selective transport; and recovery of PMs from certain mixtures were accomplished across the TOA-SLM on the basis of differences in extraction equilibria and kinetics.  相似文献   

2.
《分离科学与技术》2012,47(20):3821-3830
Abstract

Transport behavior of iridium through a supported liquid membrane (SLM) was investigated using trioctylamine (TOA) as a mobile carrier. Iridium(IV) was almost quantitatively extracted with TOA in kerosene from a low HCl solution, and extracted Ir(IV) was stripped with an HClO4 or HNO3 solution. Based on the extraction and stripping data, transport of Ir(IV) through a TOA-SLM was performed. Iridium(IV) in the feed solution with low HCl concentration was effectively transported into the HClO4 or the HNO3 product solution. Iridium(IV) was recovered and concentrated in the 1 M HClO4 product solution by reducing the volume of strip solution relative to the volume of feed solution, yielding a sufficient enrichment factor.  相似文献   

3.
《分离科学与技术》2012,47(15):1317-1328
Abstract

The transport of europium has been studied through a supported liquid membrane (SLM) impregnated with dihexy-N,N-diethylcarbamoylmethylphosphonate (CMP). Europium was effectively extracted from the perchlorate solution into SLM, but was insufficiently stripped to a dilute acid solution. The addition of 1-decanol improved the stripping process, and quantitative transport of europium was achieved. By the combination of two SLM systems consisting of diiso-decylphosphoric acid and CMP, europium was transported from the feed solution (0.1 M HNO3) through the intermediate solution (1 M HclO4 + 4 M NaClO4) to the product solution (0.1 M HNO3) and effectively concentrated by a factor of about 20.  相似文献   

4.
Transport of Pb2+ was carried from acidic solution into alkaline stripping phase through tri‐n‐octylamine‐xylene‐polypropylene supported liquid membrane. The transport of Pb2+ through the membrane was studied by varying the concentration of Pb2+ and HNO3 in feed solution, NaOH concentration in strip solution and TOA concentration in membrane phase. The flux data obtained has been used to study the stoichiometry of complex Pb(NO3)n+2(HNR3)n. The supported liquid membrane (SLM) has been found stable for 10 runs with 24 h between each run. This SLM has been used effectively to extract lead ions along with chromium, copper and zinc ions from aqueous acidic leached solution of paint and industrial effluents. © 2012 Canadian Society for Chemical Engineering  相似文献   

5.
《分离科学与技术》2012,47(4):609-619
Abstract

The extraction and stripping behavior of platinum(IV) between trioctylamine (TOA) in kerosene and different aqueous media has been investigated. Perchlorate anion was found to be most effective for the stripping of platinum under acidic and neutral conditions. The transport of platinum was performed through a supported liquid membrane (SLM) impregnated with TOA as a mobile carrier. Platinum was almost quantitatively transported from the hydrochloric acid solution to the stripping solutions containing perchlorate anion against its large concentration gradient without accumulation in the liquid membrane layer. The transport behavior of platinum was greatly improved by the addition of 1-octanol in SLM, and the permeation rate was mainly controlled by diffusion in the aqueous boundary layer.  相似文献   

6.
《分离科学与技术》2012,47(4):592-600
The permeation of U(VI) from nitric acid medium using supported liquid membrane (SLM) technique has been studied employing varying compositions of feed (uranium concentration and acidity), carrier, and receiving phase. Microporous polytetrafluoroethylene (PTFE) membranes were used as a solid support and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) either alone or as a mixture of neutral donors like tri-n-butyl phosphate (TBP), tris(2-ethylhexyl) phosphate (TEHP), and tri-n-octyl phosphine oxide (TOPO) dissolved in n-parrafin as the carrier. Oxalic acid/Na2CO3 solutions were used as the receiving phase. The permeability coefficient (P) of U(VI) decreased with increased nitric acid concentration up to 3 M HNO3 and thereafter increased up to 5 M HNO3. Uranium permeation was also investigated from its binary mixtures with other metal ions such as Zr(IV), Th(IV), and Y(III) at 2 M HNO3 employing 0.1 M PC88A/n-paraffin as the carrier, and 0.5 M oxalic acid as the receiver phase. The presence of neutral donors in the carrier solution enhanced the permeation of U(VI) across the SLM in the following order: TEHP ~ TBP > TOPO using 0.1 M oxalic acid as receiver phase. There was significant enhancement in uranium transport for feed acidity ≤2 M HNO3 employing 1 M Na2CO3 as the receiver phase. These studies suggested that 0.1 M PC88A and 0.5 M oxalic acid as carrier and receiver phases appear suitable for selective and faster transport of uranium from the uranyl nitrate raffinate (UNR) waste solutions.  相似文献   

7.
《分离科学与技术》2012,47(17):2616-2625
As fundamental research for separation of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO2-P adsorbent was prepared by impregnation of N,N′-dimethyl-N,N′-di-n-octyl-thiodiglycolamide (MOTDGA) and Tri-n-octylamine (TOA) into silica/polymer composite support (SiO2-P). The adsorption behavior of Ru(III), Rh(III), and Pd(II) in simulated HLLW onto the adsorbent were investigated by the batch method to obtain their corresponding equilibrium and kinetic data. The adsorbent showed strong adsorption for Pd(II) and the adsorption reached equilibrium within 2 hr. High distribution coefficient (K d) values for Pd(II) were obtained in 0.1–1 M HNO3 concentration. In addition, the use of both MOTDGA and TOA improved adsorption of Ru(III) and Rh(III) better than individual use of them. Especially, the K d value for Ru(III) towards (MOTDGA-TOA)/SiO2-P adsorbent was three times larger than that in the adsorption using only with MOTDGA or TOA as extractant. The adsorptions of Ru(III), Rh(III), and Pd(II) followed the Langmuir adsorption model, and were found to be controlled by the chemisorption mechanism.  相似文献   

8.
In this paper the use of trioctylamine (TOA) to extract HCl from Rh(III)-containing solutions generated by a supported liquid membrane (SLM) process is investigated. TOA was found to extract HCl readily (in a single contact of 3 min duration) at a molar ratio [HCl]/[TOA] equal to one. For each mole of HCl extracted an equivalent amount of H2O was found to be extracted as well. As far as Rh(III) extraction of TOA is concerned this was found to depend on the age of the solution and the Cl concentration. Prolonged aging (accelerated by heating) or [Cl]⩾3 M was found to completely suppress the extraction of Rh(III) by TOA. The chloride ion concentration effect was attrib-uted to Le Chatelier's principle while the aging effect was attributed to the aquation/conversion of the extractable RhCl63− complexes to RhCl5(H2O)2−. The aquation reaction was studied with UV–Visible spectroscopy in an effort to substantiate the solvent extraction (SX) results. On the basis of the findings of this work a combined SLM/SX process flowsheet is proposed according to which the Rh(III) and HCl co-transported through the supported liquid membrane are co-extracted by TOA and subsequently separated by differential stripping; Rh(III) with 0·5 M HCl/3 M Cl medium and HCl with NAOH.  相似文献   

9.
《分离科学与技术》2012,47(2-3):641-659
Abstract

Supported liquid membranes (SLM), consisting of an organic solution of n-octyl(phenyl)-N, N-diisobutylcar-bamoylmethylphosphine oxide (CMPO) and tributyl-phos-phate (TBP) in decalin are able to perform selective separation and concentration of actinide and lantha-nide ions from aqueous nitrate feed solutions and synthetic nuclear wastes.

In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of HNOs which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO3 from the strip solution.

In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/ primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HN03 concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion.  相似文献   

10.
A new supported liquid membrane (SLM) system was prepared for the selective transport of bismuth ions from the aqueous feed into the aqueous permeate phase. The support of the SLM was a thin porous polypropylene or polyvinylidene fluoride membrane impregnated with diisooctyldithiophosphinic acid (Cyanex 301) as mobile carrier in 4‐chloroacetophenon as organic solvent. Cyanex 301 acts as a highly selective carrier for the uphill transport of bismuth ions through the SLM. In the presence of HNO3 as a metal ion acceptor in the strip solution, the transport of bismuth ions into the strip side reached 70 % of the initial feed concentration after 3.5 hours. The selectivity and efficiency of bismuth transport from aqueous solutions containing different mixtures of cations were investigated. In the presence of P2O72– ions as suitable masking agent in the feed solution, the interfering effects of other cations were completely eliminated. The selective transport of bismuth through SLM is superior to liquid‐liquid extraction or through bulk liquid membranes. This is due to the high efficiency. The SLM reduces the solvent requirements, combines extraction and stripping operations in a single process and allows the use of highly selective extractants. The system may be applied to samples containing very low bismuth concentrations.  相似文献   

11.
《分离科学与技术》2012,47(6):1013-1023
Abstract

A transport study of W(VI) ions across tri-n-octylamine (TOA) xylene-based supported liquid membranes from aqueous solutions containing tartaric acid (TA) has been carried out. TA complexes with W(VI) ions to keep them in solution and enhance flux. The optimum conditions of transport found are 0.132 M TA and 0.001 M HCl in the feed, 3.7 M NaOH in the strip, and 0.66 M TOA in the membrane. Beyond these TA and TOA concentrations, there is a decrease in flux and permeability values which are 4.76 × 10?5 mol/m2/s and 9.15 × 10?10 m2/s, respectively. NaOH is a better stripping agent than NH4OH for these metal ions. Increases in membrane phase viscosity and temperature reduce the values of these transport parameters.  相似文献   

12.
A new macroporous silica‐based‐polymer (SiO2‐P) soft ligand composite material, 2,6‐bis(5,6‐di(iso‐butyl)‐1,2,4‐triazine‐3‐yl)pyridine (BDIBTP/SiO2‐P), was synthesized by impregnation and immobilization of BDIBTP and 1‐octanol molecules into the pores of the SiO2‐P particles. The impact of some typical alkali metal and alkaline earths Cs(I), Na(I), K(I), Rb(I), Sr(II), and Ba(II) containing in highly active liquid waste (HLW) on the adsorption of Pd(II) onto BDIBTP/SiO2‐P was studied. It was performed by examining the effects of contact time and the HNO3 concentration in the range of 0.3–7.0 M. BDIBTP/SiO2‐P showed strong adsorption ability and high selectivity for Pd(II) over all the tested metals. The chromatographic partitioning of Pd(II) from a simulated HLW solution was conducted by BDIBTP/SiO2‐P packed column. Pd(II) was effectively eluted with 0.2 M thiourea–0.1 M HNO3. The others showed no adverse impact on separation of Pd(II). The results are beneficial to partitioning of minor actinides and Pd(II) together from HLW by BDIBTP/SiO2‐P in the MPS process developed. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

13.
ABSTRACT

A new Schiff base extractant, N,N'-bis[l-phenyl-3-methyl-5-hydroxy-pyrazole-4-benzylidenyl]-l,3-propylene diamine (H2A) was synthesized and characterized. The extraction mechanism of palladium(II) from HNO3 or HClO4 medium with H2A in chloroform or toluene was investigated. The influences of the Schiff base concentration in the organic phase, the concentration of palladium, the pH and anions (Cl?, S04 ?, NO3 ?, ClO4 ?) in the aqueous phase and the temperature on the distribution ratio for palladium (II) have been examined. The extracted complex has been confirmed by chemical analysis, thermoanalyses and IR spectroscopy. It was found that palladium is extracted according to the following extraction reaction:

The extraction equilibrium constants of palladium(II) were 8·4 and 21·3 in chloroform and toluene diluents, respectively. The values for the enthalpy and standard free energy of extraction were also obtained. The separation of Pd(II) from the mixed solution of Pd(II)-Pt(IV) was achieved by adjusting the pH.  相似文献   

14.
《分离科学与技术》2012,47(1):217-231
Abstract

The radiolytic reduction of palladium ions to palladium metal in perchloric acid solutions has been studied with the aim of separating palladium from aqueous acidic waste. Fraction of Pd separated out as precipitate has been studied as a function of initial Pd concentration and strength of HClO4. Addition of t‐butanol to the system has been found to cause substantial enhancement in the amount of Pd precipitated as compared to that in its absence. At a given absorbed dose, the extent of Pd separated is found to increase with the concentration of HClO4 in presence of t‐butanol. However, the converse is true for the radiolysis in absence of t‐butanol. The decrease in the extent of reduction of Pd(II) to Pd(0) has been found to be due to increasing formation of chloride ions that tend to form reduction resistant cholorocomplexes of Pd. This is supported by the red‐shifting in the absorption bands of Pd(ClO4)2 observed for the spectra of gamma radiolysed solutions of Pd(II) at higher HClO4 concentrations. External addition of chloride ions to aqueous Pd(II)/HClO4 system even in presence of t‐butanol has been found to cause substantial inhibition to the radiolytic reduction of Pd(II) owing to formation of reduction‐resistant complexes. Correspondingly, the addition of nitrate ions to Pd(II)/HClO4/t‐butanol system showed inhibition effect at much greater stoichiometric amount of nitrate.  相似文献   

15.
《分离科学与技术》2012,47(5):728-735
The present study deals with the application of supported liquid membrane (SLM) technique for the separation of thorium from nitric acid medium using 2-ethyl hexyl hydrogen 2-ethyl hexyl phosphonate (PC88A) as a carrier and aqueous ammonium carbonate as a receiving phase. The effects of feed acidity, nature of strippant, and membrane pore size and membrane thickness on the transport of thorium have been studied in detail. Transport behavior of uranium (233U) and fission products from a radioanalytical laboratory waste is also studied. Stability of the membrane against the leaching of the extractant and stability of the membrane support have been investigated. An attempt has been made to model the physicochemical transport of thorium in SLM and establish the mechanism of thorium transport. Transport of thorium increased from 25% to about 96% using 0.75 M PC88A in n-dodecane as carrier and 2 M ammonium carbonate as stripping phase as the feed acidity decreased from 4 M HNO3 to 0.5 M HNO3. Optimum conditions obtained from this study were applied to recover thorium and 233U from analytical waste generated in the laboratory.  相似文献   

16.
Various cross‐linked (4, 8, and 12%) gel‐type weak‐base poly(4‐vinylpyridine) (PVP) resins were studied for palladium recovery from nitric acid medium. The sorption of palladium was found to decrease with an increase in cross‐linkage of the resin. 8 and 12% PVP resins exhibited maximum D Pd(II) values at 2–6 M HNO3, whereas 4% PVP resin showed maximum D Pd(II) values at lower acidities (0.1 M HNO3). FT‐IR, SEM, and XPS techniques were used for the characterization of palladium‐loaded resins. Detailed studies were carried out with the resin of modest cross‐linkage i.e., 8% PVP resin. The sorption isotherm studies revealed that the maximum palladium loading approaches the theoretical capacity of the resin, presuming the sorption of palladium as divalent anion at 4 M HNO3. The pseudo‐second order kinetics model yielded the best fit for the experimental data of sorption kinetics. An increase in temperature accelerates the rate of palladium extraction and also the addition of chloride ions increases the palladium uptake. Column studies were performed using 4 and 8% PVP resins in 2 and 4 M nitric acid concentrations. The loaded palladium could be eluted efficiently with acidic thiourea solution.  相似文献   

17.
《分离科学与技术》2012,47(8):1629-1640
Abstract

A selective transport system for alkali and alkaline earth metallic ions with a perchlorate ion as a pairing ion species through a supported liquid membrane (SLM) containing tripentyl phosphate (TPP) as a carrier is described. The SLM used is a porous polypropylene membrane impregnated with TPP solution in o-nitrophenyloctylether. The effects of the pairing ion species, the initial perchlorate concentration, and the TPP concentration on metallic ion transportability are examined under various experimental conditions. The permeation velocities of the metallic ions in the transport system followed the sequence Li+?Na+>K+>Mg2+; that is, a highly selective transport for Li+ ion was observed. Compared with the transport rates of alkali metallic ions, those of transition metallic ions such as Cu2+ and Fe3+ ions are very low. The permeation velocities of alkali and alkaline earth metallic ions through an SLM are dependent on the concentrations of perchlorate and TPP. Equations for the permeation velocities of Li+, Na+, K+, and Mg2+ ions through an SLM, based on two concentrations of perchlorate and TPP, are proposed.  相似文献   

18.
Extraction of Pd(II) from nitric acid solution with CYANEX 471X in chloroform was carried out using liquid–liquid extraction and emulsion liquid membrane (ELM) techniques. Extraction equilibrium was postulated using the slope analysis method. KSCN solution efficiently stripped Pd(II). In the ELM investigations, the effects of the different parameters affecting the membrane stability were studied. The prepared membrane was found to be selective for Pd(II) extraction in the presence of some interfering ions and its permeation reached 98%. The kinetics of Pd(II) permeation through the prepared membrane indicated that the rate of permeation depends on the carrier, Pd(II), and nitric acid concentration.  相似文献   

19.
《分离科学与技术》2012,47(7):1070-1079
A macroporous silica-based multidentate soft-ligand 2,6-bis(5,6-di(iso-hexyl)-1,2,4-triazine-3-yl)pyridine (BDIHTP) material, BDIHTP/SiO2-P, was synthesized by impregnating and immobilizating BDIHTP into the pores of the SiO2-P particles. The adsorption behavior of some typical fission products Mo(VI), Zr(IV), Ru(III), Pd(II), Rh(III), and a part of rare earths La(III), Ce(III), Nd(III), Eu(III), Gd(III), Dy(III), Er(III), Yb(III), and Y(III) contained in highly active liquid waste (HLW) onto BDIHTP/SiO2-P was investigated. The effects of contact time and the concentration of HNO3 in the range of 0.3 M to 5.0 M were examined. The BDIHTP/SiO2-P materials showed excellent adsorption ability and high selectivity for Pd(II) greater than all of the tested metals. It was contributed to the effective complexation of Pd(II), a soft-Lewis acid and an electron-pair acceptor, with BDIHTP, a soft-Lewis base and an electron-pair donor. The chromatographic partitioning of the tested metals from 1.0 M HNO3 by BDIHTP/SiO2-P packed column was performed. Pd(II) was effectively eluted with 0.2 M thiourea-0.1 M HNO3 and then separated from the others. The results are beneficial to partitioning of the long-lived minor actinides and Pd(II) together from HLW by the BDIHTP/SiO2-P materials.  相似文献   

20.
The extraction and recovery or stripping of mercury ions from chloride media using microporous hydrophobic hollow fiber supported liquid membranes (HFSLM) has been studied. Tri-n-octylamine (TOA) dissolved in kerosene was used as an extractant. Sodium hydroxide was used as a stripping solution. The transport system was studied as a function of several variables: the concentration of hydrochloric acid in the feed solution, the concentration of TOA in the liquid membrane, the concentration of sodium hydroxide in the stripping solution, the concentration of mercury ions in the feed solution and the flow rates of both feed and stripping solutions. The results indicated that the maximum percentages of the extraction and recovery of mercury ions of 100% and 97% were achieved at the concentration of hydrochloric acid in the feed solution of 0.1 mol/l, the concentration of TOA at 3% v/v, the concentration of sodium hydroxide at 0.5 mol/l and the flow rates of the feed and stripping solutions of 100 ml/min. However, the concentration of mercury ions from 1–100 ppm in the feed solution had no effect on the percentages of extraction and recovery of mercury ions. Thus, these results have identified that the hollow fiber supported liquid membrane process has high efficiency on both the extraction and recovery of mercury (II) ions. Moreover, the mass transfer coefficients of the aqueous phase (k i ) and membrane or organic phase (k m ) were calculated. The mass transfer coefficients of the aqueous phase and organic phase are 0.42 and 1.67 cm/s, respectively. The mass transfer coefficient of the organic phase is higher than that of the aqueous phase. Therefore, the mass transfer controlling step is the diffusion of the mercury ions through the film layer between the feed solution and the liquid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号