首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(13):3522-3544
Abstract

A novel adsorbent, formaldehyde polymerized tamarind fruit shell (FPTFS) containing sulphonic acid functional groups was prepared and its utility for Hg(II) adsorption from water and wastewater was investigated. The kinetic and isotherm data, obtained at optimum pH value 6.0 for different concentrations and temperatures, could be fitted with the Ritchie modified second-order equation and Sips isotherm model respectively and the coefficients indicated favorable adsorption of Hg(II) on the FPTFS. The complete removal of 23.86 mg/L Hg(II) from chlor-alkali industry wastewater was achieved by 4 g/L FPTFS. The reusability of the FPTFS for several cycles was also demonstrated using 0.1 M HCl solution.  相似文献   

2.
Iron(III)‐loaded carboxylated polyacrylamide‐grafted sawdust was investigated as an adsorbent for the removal of phosphate from water and wastewater. The carboxylated polyacrylamide‐grafted sawdust was prepared by graft copolymerization of acrylamide and N,N′‐methylenebisacrylamide onto sawdust in the presence of an initiator, potassium peroxydisulfate. Iron(III) was strongly attached to the carboxylic acid moiety of the adsorbent. The adsorbent material exhibits a very high adsorption potential for phosphate ions. The coordinated unsaturated sites of the iron(III) complex of polymerized sawdust were considered to be the adsorption sites for phosphate ions, the predominating species being H2PO ions. Maximum removal of 97.6 and 90.3% with 2 g L?1 of the adsorbent was observed at pH 2.5 for an initial phosphate concentration of 100 and 250 μmol L?1, respectively. The adsorption process follows second‐order kinetics. Adsorption rate constants as a function of concentration and temperature and kinetic parameters, such as ΔG±, ΔH±, and ΔS±, were calculated to predict the nature of adsorption. The L‐type adsorption isotherm obtained in the sorbent indicated a favorable process and fitted the Langmuir equation model well. The adsorption capacity calculated by the Langmuir adsorption isotherm gave 3.03 × 10?4 mol g?1 of phosphate removal at 30°C and pH 2.5. The isosteric heat of adsorption was also determined at various surface loadings of the adsorbent. The adsorption efficiency toward phosphate removal was tested using industrial wastewater. Different reagents were tested for extracting phosphate ions from the spent adsorbent. About 98.2% of phosphate can be recovered from the adsorbent using 0.1M NaOH. Alkali regeneration was tried for several cycles with a view to recover the adsorbed phosphate and also to restore the adsorbent to its original state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2541–2553, 2002  相似文献   

3.
《分离科学与技术》2012,47(12):2806-2826
Abstract

Colloidal particles of CaO were synthesized by the sol-gel method. The particle morphology was characterized by FT-IR, TGA, DTA, and TEM analysis. The ability of the CaO nanoparticles for removal of fluoride from aqueous solution through adsorption has been investigated. All the experiments were carried out by batch mode. The effect of various parameters viz. contact time, pH effect (pH 2–10), adsorbent dose (0.01–0.1 g/100 ml), initial fluoride concentration (10–100 mg/l) and competitive ions has been investigated to determine the adsorption capacity of CaO nanoparticles. Almost complete removal (98%) of fluoride was obtained within 30 minutes at an optimum adsorbent dose of 0.6 g/L for initial fluoride concentration of 100 mg/L. The adsorption isotherm was also studied to find the nature of adsorbate-adsorbent interaction.  相似文献   

4.
《分离科学与技术》2012,47(16):2682-2694
ABSTRACT

Fe-Mn-Zn oxide trimetal alloy nanocomposite (FMZONC) fabricated and surface properties of the composite material revealed via several characterization methods. Porous nature and alloy type mixing of metals deduced from transmission electron microscopy analysis. Field emission scanning electron microscopy image revealed composite material is of size between 7 and 16 nm. The adsorption properties investigated through isotherm and kinetic experiments. In addition, pH effects and desorption properties were also studied. Maximum adsorption capacity (q max) 149 mg/g for phosphate removal observed at pH 6 and 0.20 g/L of adsorbent. Chemical interaction between metal hydroxide and phosphate elaborated from Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS).  相似文献   

5.
《分离科学与技术》2012,47(14):2260-2274
The removal of phosphate from aqueous solution by the adsorption process using zeolite synthesized from fly ash was investigated in this study. The XRD patterns revealed that the major crystalline phase of the synthesized zeolite was gismondine. The phosphate immobilization capacity (PIC) increased significantly from 52.7 mg/g of fly ash to 102.9 mg/g of synthesized zeolite after conversion. The batch experiments were conducted to investigate the effect of pH, initial phosphate concentration, and adsorbent amount. The maximum adsorption capacity was obtained at the pH value of 7.0. The adsorption process followed Ho' pseudo-second-order model, and both liquid film and intra-particle diffusion were the rate-controlling step for the process. The adsorption equilibrium data had been analyzed by Langmuir, Freundlich, Radlich-Peterson, Koble-Corrigan, Tempkin, Dubinin-Radushkevich, and Generalized models. The results showed that the Langmuir model gave the best fit. The process was also found to be endothermic. The maximum phosphate adsorption capacity obtained was 132.02 mg/g (30°C), 156.36 mg/g (40°C) and 184.17 mg/g (50°C), respectively, suggesting that the synthesized zeolite is a promising material and can be used to remove phosphate from wastewater.  相似文献   

6.
《分离科学与技术》2012,47(4):960-978
Abstract

The capability of Iranian natural clinoptilolite for ammonia removal from aqueous solutions has been thoroughly studied. Both batch and continuous (column) experiments were carried out. The viability of this natural zeolite in reducing the leakage of ammonia to the environment through waste water streams was a main focus of this research. Through the batch experiments, the effect of process variables such as the size of zeolite particles, pH, and ammonia concentration of the feed solution on the kinetics of ammonia uptake were investigated. Ammonia removal occurred rapidly and within the first 15 minutes of contact time, a major part of ammonia was removed from the solution. An adsorption capacity about 17.8 mg NH4 +/g zeolite at feed ammonia concentration of 50 mg/L was obtained and the optimum range for pH was achieved about 5.5–7.6. The adsorption capacity of clinoptilolite in the continuous mode was about 15.16 and 15.36 mg NH4 +/g zeolite for the original and regenerated types of clinoptilolite, respectively, where feed ammonium concentration was 50 mg/L. Increasing the feed ammonium concentration to 100 mg/L did not reduce the capability of the column for its ammonium removal and up to a bed volume (BV) of 85, there was only less than 1 mg/L ammonium in the column outlet. Presence of cations such as Ca2+, Mg2+ and Na+ in the feed solution reduced the clinoptilolite adsorption capacity to about 11.68 mg NH4 +/g zeolite. Regeneration experiments were carried out using concentrated sodium chloride solutions, as well as tap water. Where tap water was used as the regenerant, gradual release of ammonium from exhausted clinoptilolite was observed.  相似文献   

7.
《分离科学与技术》2012,47(3):501-513
Abstract

Activated carbons offer an efficient option for the removal of organic and inorganic contaminants from water. However, due to its high costs and difficulty in the regeneration, other low cost adsorbents have been used. In this work, the adsorption capacity of an adsorbent carbon with high iron oxides concentration was compared with that of a commercial activated carbon in the removal of a leather dye from an aqueous solution. The adsorbents were characterized using SEM/EDAX analysis and BET surface area. The capacity of adsorption of the adsorbents was evaluated through the static method at 25°C. The results showed that the color removal was due to the adsorption and precipitation of the dye on the surface of the solids. The adsorption equilibrium was described according to the linear model for the adsorbent carbon and the equilibrium constant was 0.02 L g?1. The equilibrium of adsorption on activated carbon exhibited a behavior typical of the Langmuir isotherm and the monolayer coverage was 24.33 mg g?1. A mathematical model was proposed to describe the dynamics of the color removal using a fixed bed considering that the color removal is due to the adsorption and the precipitation of the dye on the adsorbent.  相似文献   

8.
《分离科学与技术》2012,47(12):1785-1792
Elevated concentrations of nitrate and phosphate in surface and ground waters can lead to eutrophication, and nitrate can also cause health hazards to humans. The adsorption process is generally considered to be an efficient technique in removing these ions provided that the adsorbent is highly selective for these ions. Removal of nitrate and phosphate from a synthetic water (50 mg N/L as nitrate, 15 mg P/L as phosphate) and a wastewater (12.9 mg N/L as nitrate, 5.9 mg P/L as phosphate) using a Purolite A500P anion exchange resin and a hydrous ferric oxide (HFO) columns (60 cm height, 2 cm diameter, flow rate 1 m/h) in series containing 1–10% (w/w) of these adsorbents and the remainder anthracite (90–99%) were studied. Data from batch adsorption experiment at various concentrations of adsorbents satisfactorily fitted to Langmuir adsorption isotherm for nitrate and phosphate on Purolite with adsorption maxima of 64 mg N/g and 7 mg P/g and only for phosphate on HFO with adsorption maxima of 14 mg P/g. Both batch and column experiments showed that Purolite selectively removed nitrate and HFO selectively removed phosphate. The Purolite column BTC time was greater for nitrate than for phosphate. At the highest percentage by weight of Purolite almost all nitrate was removed in batch study and up to 1000 min in column study, but it was not able to remove a comparatively high percentage of phosphate. However, when the effluent from the Purolite column was passed through the HFO column almost all phosphate was removed. The two columns when set up in series also removed almost all nitrate and phosphate from the wastewater.  相似文献   

9.
《分离科学与技术》2012,47(9):1391-1401
The main objective of this study is to investigate the possibility of crosslinked chitosan-tetraethoxy orthosilane (TEOS) (chitosan-silica) beads to be used as an adsorbent material to adsorb the lignosulfonate compound in solution. Different parameters affecting the adsorption capacity such as contact time, adsorbent dosage, initial concentration, pH, ionic strength, and temperature have been investigated. Adsorption isotherms of lignosulfonates onto chitosan-silica beads were also studied. Batch adsorption experiments were carried out and the optimum lignosulfonate adsorption onto chitosan-silica beads occurred at contact time of 30 minutes, the adsorbent dosage of 40 g/L, initial concentration of 50 mg/L, pH 5, and a temperature of 45°C. Adsorption isotherms studied through the use of graphical methods revealed that the adsorption of lignosulfonates onto chitosan-silica beads follows the Langmuir model, with the maximum adsorption capacity being 238.3 mg/g at pH 7. Adsorption is dependent on the ionic strength. The adsorption of lignosulfonate on chitosan-silica beads was best described with the pseudo-second-order kinetic model with a rate constant of 0.32 g · mg?1 · min?1, while intra-particle-diffusion was the main rate-determining step in the lignosulfonate adsorption process. The chitosan-silica beads investigated in this study were thus exhibited as a high potential adsorbent for the removal of lignosulfonate from solution.  相似文献   

10.
《分离科学与技术》2012,47(4):533-544
This work addresses the preparation and characterization of inexpensive adsorbents for the removal of Ni (II) from aqueous solutions. Activated carbon based adsorbents have been prepared from plant based biomass resources, namely Pineapple stem ( Ananas Comosus ) and Bamboo Stem ( Bambuseae ). Adopting phosphoric acid and heat treatment techniques, it has been observed that the bamboo stem activated charcoal (BSAC) and pineapple stem (PS) adsorbents had a BET surface area of 116 and 11.47 m 2 /g, respectively. FTIR analysis indicated that various surface functional groups (such as C ≡ N stretching, stretching vibration of C = O, –CH3 wagging and C–O stretching vibration) contribute towards Ni (II) adsorption. Batch mode adsorption experiments were conducted for these adsorbents in the range of 50–300 mg/L Ni (II) solution concentration, 2–10 pH, 15–300 min. contact time, and 0.02–0.1 g/50 mL dosage. The BSAC adsorbent has been characterized with a metal uptake and %removal of 121.72 mg/g and 92.47, respectively, which corresponds to 45% higher metal uptake than corresponding bamboo based adsorbents presented in the literature. Further experimentation with BSAC enabled to achieve activated charcoal with surface area values similar to that of the commercial activated carbon adsorbent. The bamboo adsorbent has also been evaluated to perform similar to the commercial activated carbon for the removal and recovery of Pd (II) from synthetic electroless plating solutions. Also, a conceptual cost analysis indicated and affirmed towards the potential of the BSAC adsorbents for waste water treatment applications.  相似文献   

11.
We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove copper ions from aqueous solutions such as wastewater. Batch experiments were conducted to determine the factors affecting adsorption of copper. The influence of pH, adsorbent dose, initial Cu2+ concentration, type of adsorbent and contact time on the adsorption capacity of Cu2+ from aqueous solution by the batch adsorption technique using ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required for maximum adsorption was found to be 5. The results from the sorption process showed that the maximum adsorption rate was obtained at 300 mg/L when a different dosage of fly ash was added into the solution, and it can be concluded that decreasing the initial concentration of copper ion is beneficial to the adsorption capacity of the adsorbent. With the increase of pH value, the removal rate increased. When the pH was 5, the removal rate reached the maximum of over 99%. When initial copper content was 300 mg/L and the pH value was 5, the adsorption capacity of the zeolite Z 4 sample reached 27.904 mg/g. The main removal mechanisms were assumed to be the adsorption at the surface of the fly ash together with the precipitation from the solution. The adsorption equilibrium was achieved at pH 5 between 1 and 4 hours in function of type of adsorbent. A dose of 1: 25 g/mL of adsorbent was sufficient for the optimum removal of copper ions. For all synthesized adsorbents the predominant mechanism can be described by pseudo-second order kinetics.  相似文献   

12.
ABSTRACT

In this research, graphene oxide decorated with strontium oxide (SrO/GO) is introduced as a new adsorbent material for the efficient removal of ammonia from industrial wastewater. The new adsorbent was thoroughly studied in terms of morphology, crystallography and chemical composition using characterization techniques such as Fourier transform infrared (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and zeta potential analysis. Several parameters such as pH, adsorbent dosage, contact time, and ammonia initial concentration were investigated and optimized. Ammonia adsorption onto SrO/GO was validated with kinetics and adsorption isotherms by adopting different models. The results revealed that ammonia adsorption kinetic was of pseudo-second order (R2 = 0.999) implying that chemisorption behavior and the equilibrium isotherm follows Langmuir model. This behavior shows a high maximum monolayer sorption capacity of 90.1 mg g?1 at pH equal to 7 and contact time of 120 min pointing out the synergism advantageous effect. The abundant oxygen functional groups on the graphene oxide surface and the integrated Sr-O nanoparticles could efficiently interact with ammonia species creating a surface for more favorable and efficient removal of ammonia.  相似文献   

13.
The removal behavior of fluoride ions was examined in aqueous sodium fluoride solutions using a titanium hydroxide-derived adsorbent. The adsorbent was prepared from titanium oxysulfate (TiOSO4·xH2O) solution, and was characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry-differential thermal analysis, Fourier transform infrared spectrum and specific surface area. Batchwise adsorption test of prepared adsorbent was carried out in aqueous sodium fluoride solutions and real wastewater containing fluoride ion. The absorbent was the amorphous material, which had different morphology to the raw material, titanium oxysulfate, and the specific surface area of the adsorbent (96.8 m2/g) was 200 times higher than that of raw material (0.5 m2/g). Adsorption of fluoride on the adsorbent was saturated within 30 min in the solution with 200 mg/L of fluoride ions, together with increasing pH of the solution, due to ion exchange between fluoride ions in the solution and hydroxide ions in the adsorbent. Fluoride ions were adsorbed even in at a low fluoride concentration of 5 mg/L; and were selectively adsorbed in the solution containing a high concentration of chloride, nitrate and sulfate ions. The adsorbent can remove fluoride below permitted level (< 0.8 mg/L) from real wastewaters containing various substances. The maximum adsorption of fluoride on the adsorbent could be obtained in the solution at about pH 3. After fluoride adsorption, fluoride ions were easily desorbed using a high pH solution, completely regenerating for further removal process at acidic pH. The capacity for fluoride ion adsorption was almost unchanged three times after repeat adsorption and desorption. The equilibrium adsorption capacity of the adsorbent used for fluoride ion at pH 3 was measured, extrapolated using Langmuir and Freundlich isotherm models, and experimental data are found to fit Freundlich than Langmuir. The prepared adsorbent is expected to be a new inorganic ion exchanger for the removal and recovery of fluoride ions from wastewater.  相似文献   

14.
Cr (VI) is a highly toxic pollutant to humans, to achieve high adsorption capacity, easy recovery, and good reusability, polyethersulfone/polydopamine (PES/PDA) ultrafine fibers were prepared successfully. A series of preparing effect factors were investigated systematically and the optimum one is 8.5 pH value at room temperature and 2 g/L dopamine concentration. And then they were used as an adsorbent for the removal of Cr (VI) ions from wastewater. The effect factors pH, the adsorbent dosage, and time were discussed on Cr (VI) adsorption process and the Cr (VI) adsorption behavior was investigated. It is found that the maximum Cr (VI) adsorption capacity is 115.2 ± 4.8 mg/g at pH = 3 using 0.06 g PES/PDA with 80 mins. The Cr (VI) adsorption process followed the pseudo-second-order model (r2 ≥ 0.99) and adsorption isotherms were fitted to the Langmuir model (R2 ≥ 0.999). Furthermore, the Cr (VI) adsorption mechanism was supposed according to the X-ray photoelectron spectroscopic results. Finally, PES/PDA ultrafine fibers were considered to be a promising adsorbent with good stability (decomposing temperature, 356°C), high adsorption efficiency (112.1 ± 2.5 mg/g), and good reusability (three times) on the coexistence of anions and the actual industry wastewater environment.  相似文献   

15.
《分离科学与技术》2012,47(4):717-738
Abstract

Fullers earth beads and cylinders were prepared using chitosan and sodium silicate as binders, respectively, for removal of cesium ion from aqueous solutions. The cost of the adsorbent is expected to be significantly lower as the raw materials are low cost materials and readily available. The adsorbents were characterized by SEM, EDS, and x‐ray microanalysis. Adsorption capacity of the beads was evaluated under both batch and dynamic conditions. The adsorption capacity for Fullers earth beads was found to be 26.3 mg/g of adsorbent at 293 K when the liquid phase concentration of cesium was 1000 mg/L. The adsorption capacity of Fullers earth cylinder was found to be higher than that of beads, however, it was concluded that the alkaline nature of the cylinder precipitated out cesium increasing its capacity. The capacity of Fullers earth beads decreased by almost 62% when 1 mol/L NaCl and 2.25 mmol/L of strontium were present in the solution. The Freundlich, the Langmuir isotherm equations, and a modified Polanyi's equation were used to correlate the data. The isosteric heats of adsorption suggested the heterogeneity of the surface and multilayer coverage. The first order reversible kinetic model adequately described the dynamic system during the adsorption process. The adsorption (k1) and desorption (k2) rate constants were evaluated from the dynamic model.  相似文献   

16.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

17.
《分离科学与技术》2012,47(13):3150-3169
Abstract

A process for the removal of two chlorophenols (2-chlorophenol and 2,4-dichlorophenol) from water using surface modified mango seed waste by adsorption process followed by cement fixation of the phenols-laden adsorbent is investigated. The two main objectives of this study were to develop efficient adsorbent utilizing mango seed waste by physiochemical activation and to an environmentally-friendly disposal of phenols-laden adsorbent into cement by a fixation process. The results of the present study reveal that the modified mango seed adsorbent showed an efficient adsorption potential for chlorophenols removal from water. The maximum adsorption potential of modified mango seed adsorbent for 2-chlorophenol and 2,4-dichlorophenol was 40.6 and 72.3 mg g?1, respectively at 25°C. Adsorption kinetic data of chlorophenols adsorption on mango seed adsorbent could be described more favorably by a pseudo-second-order kinetic model. After the adsorption studies, the phenol-laden adsorbent was immobilized in cement for its ultimate disposal. Leachates from the fixed phenols-laden adsorbent exhibit phenols concentrations lower than the drinking water standards. Results from this study suggest the potential utility of agricultural wastes as one of the most promising activated carbon precursors for phenols removal from water and wastewater and the safe disposal of phenol-laden adsorbent into cement by fixation process.  相似文献   

18.
Removal of heavy metals from water and wastewaters has recently gained a great deal of attention due to their serious environmental problems. In this study, novel synthesized calcium carbonate nanoparticles, prepared in a colloidal gas aphron (CGA) system, were used as adsorbents for the removal of Cu2+ ions from aqueous solutions under different conditions. A developed pseudo-second-order (PSO) model well described the adsorption kinetics of the process. Langmuir and Freundlich adsorption isotherms have been examined and the maximum adsorption capacity from the Langmuir isotherm equation was found to be 666.67?mg Cu/g adsorbent. The effects of temperature, Cu2+ initial concentration, and CaCO3 dosage on the removal capacity were also investigated using the three-level Box–Behnken experimental design method. The response surface modeling results demonstrated that under certain experimental conditions (i.e., T?=?26°C, [Cu2+]?=?200?mg/L, and [CaCO3]?=?0.5?g/L), maximum removal capacity value (393.52?mg/g) was achieved.  相似文献   

19.
Adsorption of humic acid onto pillared bentonite   总被引:1,自引:0,他引:1  
Pillared bentonite, a clean and cost-effective adsorbent with high specific areas of 111.3 m2/g and high basalspacing of 1.98 nm, was prepared for the removal of humic acid from water. It is effective for the removal of humic acid with a high adsorption capacity of 537 mg/g, and adsorption is favored under acid conditions. Adsorption is dependent on ionic strength and dissolved NaCl enhanced adsorption. Over 97% removal was observed under natural pH conditions from humic acid solutions containing 10 mg/L Ca2+ or Mg2+, which suggests that pillared bentonite can be an effective adsorbent for the removal of humic acid for drinking water purification. Pillared bentonite can be regenerated with NaOH, and the regeneration efficiency reaches 83% and 85% when the concentration of NaOH reaches 0.025 and 0.05 mol/L. The mechanism for adsorption of humic acid to pillared bentonite is discussed.  相似文献   

20.
ABSTRACT

Cadmium as a highly toxic metal is released into the environment through paper production, metal processing, phosphate fertilizers, insecticides, and treatment of wastewater. Cadmium also inhibits the body activities and is very toxic for kidney and other organisms. In the current study, zinc-based metal–organic framework, zeolitic imidazolate framework (ZIF)-8, was synthesized and modified by dimethylethylenediamine (ZIF-8-mmen) for the removal of cadmium. To optimize the experiments, response surface methodology was applied with three variables including pH, adsorbent dosage, and contact time using central composite design. The optimum conditions for pH, dosage, and time were 2, 0.1 g, and 89 min, respectively, with removal efficiency of 85.38%. The Langmuir isotherm (q m = 1000 mg/g) indicates the monolayer adsorption. The kinetic studies reveal that the Lagergren model was predominant and cadmium was not chemisorbed. Thermodynamic parameters show spontaneous, endothermic, and physisorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号