首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(1):192-211
Abstract

In this study, the biosorption of Basic Blue 9 (BB9) dye from aqueous solutions onto a biomass of Euphorbia rigida was examined by means of the initial biosorbate concentration, biosorbent amount, particle size, and pH. Biosorption of BB9 onto E. rigida increases with both the initial biosorbate concentration and biosorbent amount, whereas decreases with the increasing particle size. The experimental data indicated that the biosorption isotherms are well‐described by the Langmuir equilibrium isotherm equation at 20, 30, and 40°C. Maximum biosorption capacity was 3.28×10?4 mol g?1 at 40°C. The biosorption kinetics of BB9 obeys the pseudo‐second‐order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of biosorption. These experimental results have indicated that E. rigida has the potential to act as a biosorbent for the removal of Basic Blue 9 from aqueous solutions.  相似文献   

2.
In this work, we investigated the performance of porous carbon prepared from carob (Ceratonia siliqua L.) processing residues at optimized conditions for the removal of the Basic Green 4 (BG4) and Direct Red 28 (DR28) dyes from aqueous solutions. The influence of several parameters such as adsorbent dose, initial dye concentration, contact time and temperature was evaluated in batch adsorption experiments. Maximum adsorption capacities were observed as 769 mg g?1 and 323 mg g?1 for BG4 and DR28, respectively. These results suggest that BG4 and DR28 could be removed using a novel porous carbon from carob processing residues.  相似文献   

3.
《分离科学与技术》2012,47(15):2293-2301
The capacity of Ganoderma lucidum biomass for biosorption of selenium (IV) ions from aqueous solution was studied in a batch mode. In this study the effects of operating parameters such as solution pH, adsorbent dosage, initial metal concentration, contact time, and temperature were investigated. The adsorption capacity of G. lucidum was found to be 126.99 mg g?1. The biosorption follows pseudo-first order kinetics and the isotherms fit well to both Langmuir and Freundlich isotherm models. Isotherms have been used to determine thermodynamic parameters of the process, that is, free energy, enthalpy, and entropy changes. Furthermore, the biosorbent was characterized by scanning electron microscopy and FT-IR analysis. FT-IR analysis of fungal biomass shows the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which were responsible for the biosorption of selenium(IV) ions. The results indicated that the biomass of G. lucidum is an efficient biosorbent for the removal of selenium (IV) ions from aqueous solutions.  相似文献   

4.
5.
BACKGROUND: An immobilized new biosorbent was prepared from macro fungi Lactarius salmonicolor for the effective removal of nickel ions from aqueous media. Operating conditions were optimized as functions of initial pH, agitation time, sorbent amount and dynamic flow rate. Immobilization and biosorption mechanism were examined and the developed biosorbent was tested for the removal of nickel ions from real wastewater. RESULTS: Biosorption performance of the biomass continuously increased in the pH range 2.0–8.0. The coverage of the biosorbent surface by silica gel resulted in a significant increase in biosorption yield of nickel ions. The highest nickel loading capacity was obtained as 114.44 mg g?1 using a relatively small amount of immobilized biosorbent. Biosorption equilibrium time was recorded as 5 min. Experimental data were analyzed by different isotherm and kinetic models. Infrared spectroscopy, scanning electron microscopy and X‐ray energy dispersive analysis confirmed the process. The sorbent exhibited relatively good recovery potential in dynamic flow mode studies. Biosorption capacity of immobilized biosorbent was noted as 14.90 mg g?1 in real wastewater. CONCLUSION: Silica gel immobilized biomass of L. salmonicolor is to be a low cost and potential biosorbent with high biosorption capacity for the removal of contaminating nickel from aqueous media. © 2012 Society of Chemical Industry  相似文献   

6.
《分离科学与技术》2012,47(3):615-644
Abstract

In the present study we reported for the first time, the feasibility of pecan nutshell (PNS-Carya illinoensis) as an alternative biosorbent to remove Cr(III), Fe(III) and Zn(II) metallic ions from aqueous solutions. The ability of PNS to remove these metallic ions was investigated by using batch biosorption procedure. The effects, such as pH and the biosorbent dosage on the adsorption capacities of PNS were studied. Five kinetic models were tested, the adsorption kinetics being the better fitted one to the fractionary-order kinetic model.

The equilibrium data were fitted to Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm models. The maximum biosorption capacity of PNS were 93.01, 76.59, and 107.9 mg g?1 for Cr(III), Fe(III), and Zn(II), respectively.  相似文献   

7.
BACKGROUND: A filamentous fungus Neurospora sitophila was immobilized in Zea mays silk tissue and the prepared system was employed as a new biosorbent for the treatment of reactive dye contaminated solutions. RESULTS: Decolorization potential of the biosorbent system was investigated in batch and continuous mode operations. Design parameters such as pH, biomass dosage, contact time, temperature, dye concentration and flow rate were investigated. Batch mode equilibrium data were analyzed kinetically to determine the rate constants. The process followed the pseudo‐second‐order kinetic model. The thermodynamics of the biosorption indicated the spontaneous and endothermic nature of the process. Biosorption was well described by the Langmuir isotherm model, with a maximum monolayer biosorption capacity of 105.33 mg g?1. Relatively good dynamic flow decolorization potential was observed for the biosorbent system in synthetic and real wastewater conditions. Flow mode regeneration studies over ten consecutive cycles indicated that the suggested biosorbent maintained consistently high biosorption yield, above 70%. The possible dye‐biosorbent interaction mechanism was also confirmed by zeta potential, FTIR, SEM and EDX analysis. CONCLUSION: High biosorption capacity and regeneration potential suggest that the new biosorbent system can be used as an alternative and low‐cost biomaterial for the treatment of reactive dye contaminated solutions. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Powdered waste sludge (PWS) obtained from a paint industry wastewater treatment plant and pretreated with 1% H2O2 was used for biosorption of Zn(II) ions from aqueous solution. The effects of operating conditions, pH, temperature, agitation speed, PWS particle size, Zn ion and PWS concentrations on the extent of Zn ion biosorption were investigated in batch experiments. The optimum pH resulting in maximum Zn ion biosorption was found to be pH = 5, since Zn ions precipitated in the form of Zn(OH)2 at pH levels above 5. The rate and extent of Zn ion biosorption increased with temperature between 25 and 50 °C, although biosorption was not strongly sensitive to temperature variations since the activation energy was low at 4.5 kcal mol?1. Biosorbent particle size had a significant effect on Zn ion biosorption, yielding high percentage Zn removals at small particle sizes (Dp < 100 µm) or large surface areas of PWS. Agitation speed also considerably affected the extent of Zn ion removal, and should be above 150 rpm in order to obtain a high rate. The extent of Zn ion biosorption was also affected by the initial Zn ion and PWS concentrations. At constant biosorbent (PWS) concentration, percentage Zn ion removal decreased, but the biosorbed Zn concentration increased with increasing initial Zn ion concentrations. However, at constant initial Zn concentrations, percentage Zn removal increased, but the biosorbed Zn ion concentration decreased with increasing adsorbent (PWS) concentration. With a maximum Zn ion biosorption capacity of 168 mg g?1 powdered waste sludge was proven to be an effective biosorbent compared to other biosorbents. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
BACKGROUND: This work fulfils the need to develop an eco‐friendly biosorbent, elucidating the mechanism of biosorption. Removal of Cr(VI) by Rhizopus arrhizus was investigated in batch mode. Enhancement in the performance of the biosorbent was attempted by pre‐treating the biomass with inorganic and organic acids, chelating agent, cross‐linker and an organic solvent followed by autoclaving. The surface characterization of the biomass was carried out by potentiometric titration, surface area analysis, infrared spectroscopy, chemical modification of the biomass and scanning electron microscopy. RESULTS: All the physico‐chemical treatments of the biosorbent improved Cr(VI) uptake compared with the native biomass (21.72 mg g?1). The highest biosorption capacity (31.52 mg g?1) was achieved after pre‐treating the biomass with 0.5 mol L?1 HNO3 followed by autoclaving. Surface characterization of the biomass using pHzpc, potentiometry and Fourier transform infrared (FTIR) analysis revealed the role of amino and carboxyl groups in Cr(VI) removal by electrostatic attraction. Chemical modification of amino and carboxyl groups significantly decreased Cr(VI) uptake capacity confirming their role in biosorption. SEM analysis showed adsorption of Cr(VI) on the biosorbent surface. CONCLUSION: Rhizopus arrhizus biomass proved to be an effective and low cost alternative biosorbent for removal of Cr(VI) from aqueous solutions. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
《分离科学与技术》2012,47(12):1802-1812
In the current study, sorption of methylene blue dye (MB) from aqueous solutions, using sawdust modified with sodium dodecyl sulfate (SDS/SD) has been investigated. Sorption experiments were performed using batch and fixed-bed column systems. The effects of important parameters, such as pH, initial dye concentration, flow rate, and bed depth on the sorption of MB dye have been studied. Thomas and the bed-depth service time model (BDST) were applied for analysis of sorption data and estimating of sorption capacity. In order to drive adsorption isotherms, sorption experiments were conducted in batch mode and the treatment of the obtained data were carried out using the Langmuir and Freundlich equations. Based on the breakthrough analysis obtained from continuous sorption experiments, the highest column capacity of 129.68 mg g?1 was obtained for the SDS/SD adsorbent. The results of this study indicated that surfactant-modified sawdust is much more effective for basic MB dye removal compared to untreated sawdust (SD) and the exhausted SDS/SD column can be easily regenerated using dilute HCl solution with high performance (>95%). The results of this study also indicated the successful applicability of the introduced adsorbent as a very efficient and cost effective adsorbent for the removal of cationic dye molecules from aqueous wastes.  相似文献   

11.
BACKGROUND: The removal of methylene blue from aqueous solution was studied using softstem bulrush (Scirpus tabernaemontani Gmel.) as the biosorbent. The effects of various parameters including contact time, biosorbent dosage, ionic strength and solution pH on the biosorption were investigated. RESULTS: The sorption capacity increased with an increase in biosorbent dosage and a decrease in ionic strength. The equilibrium time was found to be 240 min for full equilibration. Pseudo‐first‐order, pseudo‐second‐order, Bangham equation and intraparticle diffusion models were applied to fit the kinetic data, and the results showed that the sorption process followed the pseudo‐second‐order model. Equilibrium data conformed to Langmuir and Redlich–Peterson isotherm models, with a maximum monolayer biosorption capacity of 53.8 mg g?1 for the Langmuir isotherm at 18 °C. The value of ΔG was estimated to be ? 29.24 kJ mol?1, indicating the spontaneous nature of the biosorption. The biosorption process was strongly pH‐dependent and favourable at alkaline pH. CONCLUSION: Softstem bulrush, which is readily available and inexpensive, could be employed as a promising biosorbent for the removal of dye. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
《分离科学与技术》2012,47(3):406-414
ABSTRACT

In this study, Anatolian black pine (ABP, Pinus nigra Arnold.) was evaluated as biosorbent for removal of crystal violet (CV) from aqueous solution. The influence of operational parameters including solution pH, initial CV concentration, biosorbent dosage, contact time, and temperature were studied in batch systems. The adsorption data followed well Langmuir isotherm with a maximum biosorption capacity of 12.36 mg/g. The equilibrium data were better fitted with pseudo-second-order kinetic model (R2 ? 0.99). Moreover, the thermodynamic parameters indicated that the CV biosorption was feasible, spontaneous, and endothermic process. This study showed that ABP (Pinus nigra Arnold.) can be used to remove CV from aqueous solutions.  相似文献   

13.
The biosorption potential of hen feathers (HFs) to remove hazardous textile dyes, namely congo red (CR) and crystal violet (CV), from their aqueous solutions was investigated in batch and dynamic flow modes of operation. The effect of biosorption process parameters such as solution pH, initial dye concentration, temperature, feed flow rate and bed height was studied. Biosorption equilibrium data were well described by the Langmuir isotherm model. Kinetic studies at different temperatures showed that the rate of biosorption followed the pseudo second-order kinetics well. A thermodynamic study showed that biosorption of both CR and CV was spontaneous and endothermic. Breakthrough time increased with increase in bed height but decreased with increase in flow rate. The Thomas model showed good agreement with the dynamic flow experimental data. Overall, the results suggest the applicability of HFs as an efficient biosorbent for removal of carcinogenic textile dyes from aqueous media.  相似文献   

14.
Tobacco hairy roots (THR) were used to evaluate its potential for the biosorption and removal of malachite green (MG) from aqueous solutions. A 32 full factorial design was applied to study the effects of pH and THR concentration on the biosorption capacity. Under the optimal conditions (pH of 7.0 and THR concentration of 1?g?L?1), dye removal efficiency was around 92%. Experimental data obtained from kinetic studies demonstrated good concordance with the pseudo-second-order model. Equilibrium studies were developed and the data were evaluated by Langmuir, Freundlich, and Sips models, being the Sips model the most adequate (maximum biosorption capacity of 277.2?mg?g?1). Thermodynamically, the biosorption of MG on THR proved to be endothermic, spontaneous, and favorable. Desorption was feasible under acidic conditions and the biosorbent could be reused three times. THR was tested in simulated effluent and the removal percentage was 87%, demonstrating that this material is a promising biosorbent which can be used to treat colored wastewaters.  相似文献   

15.
《分离科学与技术》2012,47(10):1602-1614
Toxic methylene blue dye is removed from water by accumulating it on the surface of clay minerals. Clay adsorbents are obtained from kaolinite, montmorillonite, and their acid activated forms. The adsorption experiments are carried out in a batch process in environments of different pH, initial dye concentration, amount of clay, interaction time, and temperature. Adsorption of dye is best described by second order kinetics. In the temperature range of 303 to 333 K, the Langmuir monolayer capacity for three kaolinite species increased from 45.5 to 56.5 mg g?1, 45.9 to 57.8 mg g?1, 46.3 to 58.8 mg g?1, and for three montmorillonites species from 163.9 to 181.8 mg g?1, 166.7 to 188.8 mg g?1, and 172.4 to 192.3 mg g?1. The interaction is an endothermic process driven by entropy increase and spontaneous adsorptive accumulation is ensured by favorable Gibbs energy decrease. It is found that acid activation enhances the adsorption capacity of kaolinite and montmorillonite.  相似文献   

16.
《分离科学与技术》2012,47(10):1456-1462
The biosorption behavior of lanthanum and cerium ions from aqueous solution by leaf powder of Pinus brutia was separately studied in a batch system as a function of initial pH, contact time, initial metal ion concentration, temperature, and adsorbent amount. The uptake of lanthanum and cerium was increased when the initial pH of the solution was increased. Thermodynamic parameters such as standard enthalpy (ΔH°), entropy (ΔS°) and free energy (ΔG°) were calculated and the results indicated that biosorption was endothermic and spontaneous in nature. The biosorption of lanthanum and cerium on powdered leaf of Pinus brutia was investigated by the Freundlich, Langmuir, and D-R isotherms. The results show that lanthanum and cerium adsorption can be explained by the Langmuir isotherm model and monolayer capacity was found as 22.94 mg g?1 for lanthanum and 17.24 mg g?1 for cerium. Desorption of lanthanum and cerium was studied using 0.5 M HNO3 solution. The results suggested that powdered leaf of Pinus brutia may find promising applications for the recovery of lanthanum and cerium from aqueous effluents.  相似文献   

17.
The feasibility of employing Tamarindus indica (tamarind) fruit shell (TFS) as low-cost biosorbent for removal of Cu(II) from aqueous solutions was investigated. Batch experiments were carried out as function of initial solution pH (2–7), contact time (10–240 min), initial Cu(II) concentration (20–100 mg L?1), biosorbent dose (0.5–5 g) and temperature (293–313 K). Biosorption equilibrium data were well described by the Langmuir isotherm model with maximum biosorption capacity of 80.01 mg g?1 at 313 K. Biosorption of Cu(II) followed pseudo-second-order kinetics. Gibbs free energy (ΔG0) was spontaneous for all interactions, and the biosorption process exhibited endothermic enthalpy values. To ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the Bed Depth Service Time (BDST) model was fitted to the dynamic flow experimental data to determine the column kinetic parameters useful for designing large-scale column studies. The Thomas model showed good agreement with the experimental results at all the process parameters studied. It could be concluded that TFS may be used as an inexpensive and effective biosorbent without any treatment or any other modification for the removal of Cu(II) ions from aqueous solutions.  相似文献   

18.
BACKGROUND: This research provides new insights into the biosorption of zinc on a waste product from the orange juice industry. Optimal operating conditions maximizing percentage zinc removal were determined in batch and fixed‐bed systems. Biomass was characterized by FTIR spectroscopy and by major cation content in order to better understand the biosorpion mechanism. Zn‐loaded orange waste was proposed to be used as an alternative fuel in cement kilns. RESULTS: Sorption capacity was strongly affected by biosorbent dose and solution pH, and was not strongly sensitive to particle size under the experimental conditions studied. Equilibrium data were successfully described by a Langmuir model and sorption kinetic data were adequately modelled with the pseudo‐second‐order and Elovich rate equation. The biomass was found to possess high sorption capacity (qmax = 0.664 mmol g?1) and biosorption equilibrium was established in less than 3 h. Experimental breakthrough curves were adequately fitted to the Thomas model and the dose–response model, obtaining sorption capacities in continuous assays higher than those found in batch mode. Characterization of the biomass suggested the possible contribution of carboxyl and hydroxyl groups of biomass in Zn2+ biosorption and it also highlighted the important role of light metal ions in a possible ion‐exchange mechanism. CONCLUSIONS: Orange waste could be used as an effective and low‐cost alternative biosorbent material for zinc removal from aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

20.
《分离科学与技术》2012,47(8):1167-1176
The present research is to investigate the possibility of macrofungus Lycoperdon perlatum biomass, which is an easily available, renewable plant, low-cost, as a new biomass for the removal of mercury (Hg(II)) ions from aqueous solutions. The effects of various parameters like pH of solution, biomass concentration, contact time, and temperature were studied by the using the batch method. The Langmuir model adequately described the equilibrium data. The biosorption capacity of the biomass was found to be 107.4 mg · g?1 at pH 6. The mean free energy value (10.9 kJ · mol?1) obtained from the D–R model indicated that the biosorption of Hg(II) onto fungal biomass was taken place via chemical ion-exchange. Thermodynamic parameters showed that the biosorption of Hg(II) onto L. perlatum biomass was feasible, spontaneous, and exothermic in nature. The kinetic results showed that the biosorption of Hg(II) onto fungal biomass followed second-order kinetics. This work also shows that L. perlatum biomass can be an alternative to the expensive materials like ion exchange resins and activated carbon for the treatment of water and wastewater containing mercury ions due to its ability of selectivity and higher biosorption capacity and also being low cost material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号