首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(3):388-402
Adsorption of synthetic flue gas on a commercial zeolite 13X (APGIIA) with targeted Si/Al ratio has been studied aiming to design an adsorption process for CO2 capture from post-combustion power plants. Adsorption equilibrium of pure gases (CO2 and N2) has been measured in a wide range of temperatures: 303, 333, 363, 393, 423, 473 K. Adsorption equilibrium was fitted with the multisite Langmuir model. The adsorption capacity of the zeolite pellets for CO2 is 4.54 mol/kg and 0.26 mol/kg for N2 at 303 K and 100 kPa. The dynamic behavior of the pellets in a fixed bed was also studied by measuring breakthrough curves. Adsorption and desorption was analyzed in order to understand the regeneration of the adsorbent.

Based on equilibrium and kinetic data, two different adsorption technologies were simulated: Vacuum Pressure Swing Adsorption (VPSA) and Temperature Swing Adsorption (TSA). A CO2 recovery of 63.0% with 72.1% purity was obtained using a five-step PSA cycle included rinse step. In a 5-step TSA process, however, a CO2 purity of 78.7% and recovery of 76.6% can be achieved under a heating temperature of 423 K.  相似文献   

2.
《分离科学与技术》2012,47(5):1045-1073
Abstract

The design of a layered pressure swing adsorption unit to treat a specified off-gas stream is based on the properties of the adsorbent materials. In this work we provide adsorption equilibrium and kinetics of the pure gases in a SMR off-gas: H2O, CO2, CH4, CO, N2, and H2 on two different adsorbents: activated carbon and zeolite. Data were measured gravimetrically at 303–343 K and 0–7 bar. Water adsorption was only measured in the activated carbon at 303 K and kinetics was evaluated by measuring a breakthrough curve with high relative humidity.  相似文献   

3.
《分离科学与技术》2012,47(6):850-866
Methanol is an important raw material in industry and is commonly produced from syngas. The stoichiometric ratio (H2–CO2)/(CO + CO2) of the methanol synthesis reactor feed stream must be adjusted to approximately 2.1. In this study, the replacement of the solvent unit within a coal to methanol process by a pressure swing adsorption (PSA) unit is proposed. The PSA produces a hydrogen enriched stream, to adjust the stoichiometric ratio of the methanol feed stream, and simultaneously captures the carbon dioxide for future sequestration. The feed flow rate is sub divided into eight 4-bed PSA units, operated with a defined phase lag between them in order to flatten the products (composition and flow rate) oscillations. The results show that the stoichiometric adjustment is possible and that oscillations on the products flow rate and composition are reduced to less than 3%. A carbon dioxide stream of 95.15% is obtained with a recovery of 94.2% and a productivity of 82.7 mol CO2/kg/day. The power consumption of the global process is 119.7 MW, which includes the requirements for the rinse stream (64.4 MW) and the compression of the CO2 product to 110 bar for sequestration (55.3 MW).  相似文献   

4.
《分离科学与技术》2012,47(5):710-719
In this work, adsorption isotherms and adsorption kinetics of CO2 on zeolite 13X and activated carbon with high surface area (AC-h) were studied. The adsorption isotherms and kinetic curves of CO2 on the adsorbents were separately measured at 328 K, 318 K, 308 K, and 298 K and with a pressure range of 0–30 bar by means of the gravimetric adsorption method. The mass transfer constants and adsorption activation energy Ea of CO2 on the adsorbents were estimated separately. Results showed that at very low pressure the amounts adsorbed of CO2 on the zeolite 13X was higher than that on the AC-h, while at higher pressure, the amounts adsorbed of CO2 on the AC-h was higher than that on the zeolite 13X since the AC-h has a larger surface area and a larger total pore volume compared to the zeolite 13X. The adsorption kinetics of CO2 can be well described by the linear driving force (LDF) model. With the increase of temperature, the mass transfer constants of CO2 adsorption on both samples increased. The adsorption activation energy Ea for CO2 on the two adsorbents decreased with the increase of pressure. Furthermore, at low pressure the Ea for CO2 adsorption on the zeolite 13X was slightly lower than that on the AC-h, while at higher pressure the Ea for CO2 adsorption on the zeolite 13X was higher than that on the AC-h.  相似文献   

5.
Adsorption isotherms of carbon dioxide were measured on six high-silica zeolites TNU-9, IM-5, SSZ-74, ferrierite, ZSM-5 and ZSM-11 comprising three-dimensional 10-ring (8-ring for ferrierite) at 273, 293, 313 and 333 K. Based on the known temperature dependence of CO2 adsorption, isosteric heats of adsorption were calculated. The obtained adsorption capacities and isosteric adsorption heats related to the amount of CO2 adsorbed have provided detailed insight into the carbon dioxide interaction with zeolites of different framework topology. The zeolites TNU-9 and ferrierite are characterized by pronounced energetic heterogeneity whereas due to the location of Na+ cations in the same positions the isosteric adsorption heats of CO2 adsorption on IM-5, ZSM-5 and ZSM-11 zeolites are rather constant for molecular ratio CO2/Na+ < 1. As IM-5 zeolite has a maximum adsorption capacity, it appears to have optimum properties for carbon dioxide separation.  相似文献   

6.
Zeolite (FAZ) was synthesized by the fusion method using coal fly ash to adsorb carbon dioxide. The experimental adsorption was operated batchwise in a laboratory-scale packed-bed adsorber to obtain the breakthrough curves of CO2 under conditions such as adsorption temperatures (20–80 °C), flow rates of gaseous mixture of carbon dioxide and nitrogen (40–100 cm3/min), and concentration of CO2 (3000–10000 ppmv) at atmospheric pressure of 101.3 kPa. The influence of the experimental conditions, such as the gas flow rate, concentration of CO2 and adsorption temperature on adsorption behavior, was discussed. The deactivation model, combined the adsorption with the deactivation of adsorbent, was used to analyze the physicochemical properties, such as the adsorption kinetics, capacity and heat of adsorption, by fitting the experimental data of the breakthrough curves to this model. The adsorptive activity and capacity of FAZ were as almost same as those of the commercial zeolite of Wako 4A.  相似文献   

7.
The present work presents the design, assembly and experimental validation of a microcalorimetric device coupled to a volumetric adsorption setup applied to the characterisation of adsorbents for carbon dioxide (CO2) capture. Three adsorbents were evaluated for CO2 adsorption at 273 K in the pressure range of vacuum to 101 kPa. The data for CO2 on zeolite 13X agreed well with the available data reported in the literature, thus validating the device, which also provided reproducible results with an activated carbon sample. For the amine‐modified zeolite, the differential enthalpy at lower coverage was increased by a factor of 1.7 as compared to the zeolite matrix. This points out to the potential of such technique to characterise heterogeneities introduced by amine impregnation. However, the adsorption uptake was decreased by factor of 2.7 at 101 kPa. This fact suggests that amino groups may be blocking some physisorption sites, leading to restricted chemisorption on the outer surface. Thus, the main novelty of this study is the simultaneous measurement of adsorption isotherms and respective differential enthalpy curves for amine‐impregnated adsorbents, which may be considered a fingerprint of the modified surface chemistry. This work has been carried out in the framework of a cooperation project between three South American universities and is part of the effort to develop and fully characterise adsorbent materials intended for CO2 capture. © 2012 Canadian Society for Chemical Engineering  相似文献   

8.
《分离科学与技术》2012,47(13):2569-2591
Abstract

The most common application of adsorption is via pressure swing adsorption. In this type of design, the feed and regeneration temperatures are kept approximately equal, whereas the feed pressure is higher than the regeneration pressure. By exploiting the difference in the amount adsorbed at a higher pressure to the amount adsorbed at a lower pressure, a working capacity is realized. Therefore, by examining the expected (ideal) working capacity of an adsorbent, a performance characteristic can be analyzed for a pressure swing adsorption process (PSA). For this work, feed pressures up to 2.0 atm CO2 and feed temperatures from 20°C to 200°C were investigated. These limits were chosen due to the nature of the target process: CO2 removal from flue gas.

Carbon dioxide adsorption isotherms were determined in a constant volume system at 23°C, 45°C, 65°C, 104°C, 146°C, and 198°C, for pressures between 0.001 and 2.5 atm CO2 with NaY zeolite. These data were fit with the temperature dependent form of the Toth isotherm. Henry's Law constants and the heat of adsorption at the limit of zero coverage were also determined using the concentration pulse method. Comparison of the Henry's Law constants derived from the Toth isotherm, and those obtained with the concentration pulse method provided excellent agreement.

By using the Toth isotherm, expected working capacity contour plots were constructed for PSA (Pressure Swing Adsorption), TSA (Temperature Swing Adsorption), and PTSA (Pressure Temperature Swing Adsorption) cycles. The largest expected working capacities were obtained when the bed was operated under a high‐pressure gradient PSA cycle, or a high thermal and pressure gradient PTSA cycle. The results also showed that certain TSA and PSA cycle conditions would result with higher expected working capacities as the feed temperature increases.  相似文献   

9.
Adsorption of CO2 from post-combustion flue gas is one of the leading candidates for globally impactful carbon capture systems. This work focused on understanding the opportunities and limitations of sub-ambient CO2 capture processes utilizing a multistage separation process. A hybrid process design using a combination of pressure-driven separation of CO2 from flue gas (e.g., adsorption- or membrane-based separation) followed by CO2-rich product liquefaction to produce high-purity (>99%) CO2 at pipeline conditions is considered. The operating pressure of the separation unit is a key cost parameter and also an important process variable that regulates the available heat removal necessary to reach the sub-ambient operating conditions. The economic viability of applying pressure swing adsorption (PSA) processes using fiber sorbent contactors with internal heat management was found to be most influenced by the productivity of the adsorption system, with productivities as high as 0.015 /kgsorb−1 sec−1 being required to reduce costs of capture below $60/ton CO2 captured. This analysis was carried out using a simplified two-bed process, and thus there is opportunity for further cost reduction with exploration of more complex cycle designs. Three exemplar fiber sorbents (MIL-101(Cr), UiO-66, and zeolite 13X) were considered for application in the sub-ambient process of PSA unit. Among the considered sorbents, zeolite 13X fiber composites were found to perform better at ambient temperatures as compared to sub-ambient. MIL-101(Cr) and UiO-66 fiber composites had improved purity, recovery, and productivity at colder temperatures reducing costs of capture as low as $61/ton CO2. Future economic improvement could be achieved by reducing the required operating pressure of the PSA unit and pushing the Pareto frontier closer to the final pipeline requirement via a combination of PSA cycle design and material selection.  相似文献   

10.
The separation of carbon dioxide from light hydrocarbons is a vital step in multiple industrial processes that could be achieved by pressure swing adsorption (PSA), if appropriate adsorbents could be identified. To compare candidate PSA adsorbents, carbon dioxide, methane, and ethane adsorption isotherms were measured for cation exchanged forms of the titanosilicate molecular sieves ETS-10, ETS-4, and RPZ. Mixed cation forms, such as Ba/H-ETS-10, may offer appropriate stability, selectivity, and swing capacity to be utilized as adsorbents in CO2/CH4 PSA processes. Certain cation exchanged forms of ETS-4 were found to partially or completely exclude ethane by size, and equivalent RPZ materials were observed to exclude both methane and ethane, while allowing carbon dioxide to be substantially adsorbed. Adsorbents such as Ca/H-ETS-4 and Ca/H-RPZ are strong candidates for use in PSA separation processes for both CO2/C2H6 and CO2/CH4, potentially replacing current amine scrubber systems.  相似文献   

11.
The catalytic activity of Ni–Rh on the synthesized BEA zeolite in carbon dioxide reforming of methane has been investigated. Catalysts were prepared using the incipient wetness impregnation method, with a total content of metals up to 5 wt%. Catalysts were characterized through XRD, TPR, N2 adsorption, SEM, AAS, TG/DSC analyses. The prepared Ni–Rh zeolites were tested for their catalytic activity at 700 °C, at atmospheric pressure, and at CH4/CO2 ratio of 1. Catalytic results showed that bimetallic based zeolites exhibit high activity (CH4 and CO2 conversion equal to 73 and 78, respectively) but monometallic Rh catalysts were the only one stable against coke formation.  相似文献   

12.
《分离科学与技术》2012,47(3):485-500
Abstract

A novel adsorption cycle is examined experimentally and theoretically for recovering carbon dioxide from a 50 mol% mixture with carbon monoxide. Several adsorbents are considered, and zeolite NaY is chosen for the process due to its high capacity and selectivity for CO2 in the presence of CO. The process consists of three steps. The bed is fed the gas mixture at 273 K until CO2 breakthrough occurs. The bed then undergoes countercurrent blowdown of CO2 while heating at 391 K and is finally cooled to the initial feed temperature once the bed has been depleted of CO2. Results are presented from laboratory scale experiments and are described using numerical simulations. This novel cycle provides a method for capturing and producing CO2 without the need for a purge gas and has low energy requirements if waste heat is available.  相似文献   

13.
Ordered mesoporous carbons (OMC), were synthesized by nanocasting using ordered mesoporous silica as hard templates. Ordered mesoporous carbons CMK-1 and CMK-3 were prepared from MCM-48 and SBA-15 materials with pore diameters of 3.4 nm and 4.2 nm, respectively. Mesoporous carbons can be effectively modified for CO2 adsorption with amine functional groups due to their high affinity for CO2. Polyaniline (PANI)/mesoporous carbon nanocomposites were synthesized from in-situ polymerization by dissolving OMC in aniline monomer. The polymerization of aniline molecules inside the mesochannels of mesoporous carbons has been performed by ammonium persulfate. The nanocomposition, morphology, and structure of the nanocomposite were investigated by nitrogen adsorption-desorption isotherms, Fourier Transform Infrared (FT–IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and thermo gravimetric analysis (TGA). CO2 uptake capacity of the mesoporous carbon materials was obtained by a gravimetric adsorption apparatus for the pressure range from 1 to 5 bar and in the temperature range of 298 to 348 K. CMK-3/PANI exhibited higher CO2 capture capacity than CMK-1/PANI owing to its larger pore size that accommodates more amine groups inside the pore structure, and the mesoporosity also can facilitate dispersion of PANI molecules inside the pore channels. Moreover, the mechanism of CO2 adsorption involving amine groups is investigated. The results show that at elevated temperature, PANI/mesoporous carbon nanocomposites have a negligible CO2 adsorption capacity due to weak chemical interactions with the carbon nanocomposite surface.  相似文献   

14.
Pressure swing adsorption (PSA) is an efficient method for gas separation and is a potential candidate for carbon dioxide (CO2) capture from power plants. However, few PSA cycles have been designed for this purpose; the optimal design and operation of PSA cycles for CO2 capture, as well as other systems, remains a very challenging task. In this study, we present a systematic optimization‐based formulation for the synthesis and design of novel PSA cycles for CO2 capture in IGCC power plants, which can simultaneously produce hydrogen (H2) and CO2 at high purity and high recovery. Here, we apply a superstructure‐based approach to simultaneously determine optimal cycle configurations and design parameters for PSA units. This approach combines automatic differentiation, efficient ODE solvers for the state and sensitivity equations of the PSA model, and state of the art nonlinear programming solvers. Three optimization models are proposed, and two PSA case studies are considered. The first case study considers a binary separation of H2 and CO2 at high purity, where specific energy is minimized, whereas the second case study considers a larger five component separation. © 2012 American Institute of Chemical Engineers AIChE J, 58: 3777–3791, 2012  相似文献   

15.
In this study, adsorption separation of main components of landfill gas, methane (CH4) and carbon dioxide (CO2) was carried out. Henry's law constants, limiting heat of adsorption values, pure and binary isotherms for CO2 and CH4 were determined for CaX zeolite adsorbent. Pure isotherm data were compared to those for NaX zeolite from previous studies. The CO2 adsorption capacity of CaX was greater than that of NaX; however, NaX's separation factor was higher. The heat of adsorption for CO2 for CaX was higher than those for NaX. © 2013 Canadian Society for Chemical Engineering  相似文献   

16.
《分离科学与技术》2012,47(8):1227-1234
The synthesis of horn-shaped carbon nanotubes using carbon tetrachloride as carbon source was carried out by solvothermal method at 200°C for 2 h. The scanning and transmission electron microscopic characterization of the obtained product showed the formation of horn-shaped carbon nanotubes with irregular wall structure having inner diameter of ~105 nm and length of ~1 µm. The equilibrium gas adsorption properties of horn-shaped carbon nanotubes derived from carbon tetrachloride were successfully investigated for CO2, CH4, and N2 at 288, 303, and 318 K. Horn-shaped carbon nanotubes possess better CO2 adsorption capacity (2.53 mmol/g) with high capacity selectivity (14.7) and equilibrium selectivity (59.1) over N2 at 288 K. The detailed adsorption study with estimation of physical parameters such as Henry's constant and heat of adsorption identifies the horn-shaped carbon nanotubes as a potential adsorbent material in the field of CO2 storage and separation.  相似文献   

17.
《分离科学与技术》2012,47(5):1124-1156
Abstract

Propylene‐propane separation is one of the most difficult and demanding energetic operation currently practiced using cryogenic distillation. Extensive studies on various alternatives showed that cyclic adsorption processes, and particularly pressure swing adsorption (PSA), might be an option to replace the traditional distillation. In spite of the promising results of the PSA process, much attention is currently being paid to the simulated moving bed technology (SMB) for gas‐phase separations. The ingenious principle of this process is based on the choice of an adequate adsorbent‐desorbent couple. Thus, in the present work 1‐butene has been studied as an interesting desorbent to displace adsorbed propylene‐propane mixture on 13X zeolite. The measurements of pure 1‐butene adsorption isotherms over 13X zeolite were performed with a gravimetric experimental device for pressure ranging from 0 to 110 kPa and at temperature of 333, 353, 373, and 393 K. The experimental adsorption data were correlated using Toth model. The heat of adsorption at zero coverage and the maximum loading capacity of 1‐butene were found to be 54.4 kJ/mol and 2.10 mol/kg, respectively. The adsorption and desorption of 1‐butene on 13X zeolite packed on a fixed bed initially saturated either by a propane‐propylene mixture or a pure C3 hydrocarbon has been studied. The performance of 1‐butene has been compared with isobutane that was previously proposed to be a highly effective desorbent for C3H6/C3H8 separation. A model based on a double LDF approximation for the mass transfer combined to a heterogeneous energy balance taking into account a variable velocity of the gaseous bulk phase, has been used to describe the breakthrough curves obtained experimentally at 373 K and 110 kPa.  相似文献   

18.
Carbon capture and storage (CCS) in conjunction with an increasing use of renewables provides a clean pathway to sustainable development and climate change mitigation. In selecting a low temperature CCS adsorbent, parameters such as selectivity, regeneration energy, and economicity play a crucial role. Poly(L-lactide) (PLA) is one of the most promising materials in science and engineering, not only because it is a green polymer progressively replacing petrobased plastics, but also for its carbon dioxide (CO2)-philic nature that makes it a suitable candidate for greenhouse gas capture and climate change mitigation. Literature data point to PLA as a valid CCS candidate, although no direct gaseous CO2 adsorption investigation or with mild preparation/regenerative energy was reported. In the present experimental work, a deeper investigation of the adsorption/desorption properties of PLA in presence of gaseous CO2 at room temperature was undertaken by means of a home-made Sievert-type apparatus. The effects of pressure (0–15 bar), morphology (commercial pellets, powder, and flakes), and regenerative energy (303 and 333 K) were investigated. PLA samples were also characterized by helium picnometry to obtain skeletal density and by XRD and SEM to obtain morphological and structural information. Results show that PLA represents a valid and ecological alternative among the materials for the capture of CO2. The PLA absorption capacity reaches 16 wt% at 15 bar and 303 K, and is closely linked to the thermal treatment, morphology, and crystalline structure of the material.  相似文献   

19.
An efficient design for pressure swing adsorption (PSA) operations is introduced for CO2 capture in the pre-combustion process to improve H2 recovery and CO2 purity at a low energy consumption. The proposed PSA sequence increases the H2 recovery by introducing a purge step which uses a recycle of CO2-rich stream and a pressure equalizing step. The H2 recovery from the syngas can be increased over 98% by providing a sufficient purge flow of 48.8% of the initial syngas feeding rate. The bed size (375m3/(kmol CO2/s)) and the energy consumption for the compression of recycled CO2-rich gas (6 kW/(mol CO2/s)) are much smaller than those of other PSA processes that have a CO2 compression system to increase the product purity and recovery.  相似文献   

20.
The adsorption properties of N2 and CO2 of MCM-41 and derived alkali-containing samples were analyzed over a wide range of pressures (up to ~4500 kPa) and temperatures (between 30 and 300 °C). The high-pressure and high-temperature experiments were carried out on pure MCM-41 and K- and Na-impregnated derived samples. It was analyzed the influence of pressure and temperature on the CO2 capture capacity on pure and impregnated samples. The adsorption performance was correlated to the structure and textural properties of the materials using X-ray diffraction and N2 adsorption–desorption measurements. The addition of an alkaline element changes the textural properties of the material increasing the pore size, which positively affected the CO2 adsorption capacity of these materials at high pressure. In addition, the isosteric heats of adsorption gave information about the chemical affinity between the impregnated materials and CO2. The CO2 adsorption at ~ 4500 kPa for the samples with 5 wt% Na at 100 and 200 °C were 77.98 and 9.79 mmol g?1, respectively, while the pure MCM-41 adsorbs only 8.92 mmol g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号