首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the application of functionalized Santa Barbara Amorphous mesoporous silica as an easily prepared and stable solid sorbent for the separation of trace amounts of palladium (Pd) ions in aqueous solutions. The mesoporous silica was functionalized by 3-mercaptopropyltrimetoxysilane, and its application as solid sorbents for the preconcentration of Pd ion was studied. Different experimental conditions such as pH, type and concentration of eluent solution were optimized. The in?uence of various interferences ions on the recovery of Pd(II) was investigated. In the optimized condition, the recovery was greater than 98.3%. The maximum adsorption capacity was obtained 146.2 mg g?1 for the modified sorbent. The proposed procedure was applied for the separation and preconcentration of Pd in water and wastewater samples.  相似文献   

2.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

3.
This study describes the equilibrium, kinetics, and thermodynamics of the palladium(II) (Pd(II)) adsorption onto poly(m‐aminobenzoic acid) (p‐mABA) chelating polymer. The p‐mABA was synthesized by the oxidation reaction of m‐aminobenzoic acid monomer with ammonium peroxydisulfate (APS). The synthesized p‐mABA chelating polymer was characterized by FTIR spectroscopy, gel permeation chromatography (GPC), thermal analysis, potentiometric titration, and scanning electron microscopy (SEM) analysis methods. The effects of the acidity, temperature, and initial Pd(II) concentration on the adsorption were examined by using batch adsorption technique. The optimum acidity for the Pd(II) adsorption was determined as pH 2. In the equilibrium studies, it was found that the Pd(II) adsorption capacity of the polymer was to be 24.21 mg/g and the adsorption data fitted better to the Langmuir isotherm than the Freundlich isotherm. The kinetics of the adsorption fitted to pseudo‐second‐order kinetic model. In the thermodynamic evaluation of the adsorption, the Δ values were calculated as ?16.98 and ?22.26 kJ/mol at 25–55°C temperatures. The enthalpy (ΔH°), entropy (ΔS°), and the activation energy (Ea) were found as 35.40 kJ/mol, 176.05 J/mol K, and 61.71 kJ/mol, respectively. The adsorption of Pd(II) ions onto p‐mABA was a spontaneous, endothermic, and chemical adsorption process which is governed by both ionic interaction and chelating mechanisms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42533.  相似文献   

4.
《分离科学与技术》2012,47(10):1453-1460
Silica gel modified with a surfactant, Triton X-100 molecular assembly containing an extractant, 1-(2-pyridylazo)-2-naphthol, was prepared as an adsorbent to adsorb palladium, platinum, and gold. In this study, methods of metal recovery and mutual separation from the metal coexisting solution were studied by using the modified silica gel (PT100S). The effects of pH, chloride-ion, and metal-ion concentrations on the metal adsorption rate were evaluated through batch experiment. Pd(II) and Au(III) were adsorbed on PT100S, while Pt(IV) was not adsorbed. Furthermore, it was found that Pd(II) reacted with an adsorption site on PT100S, and that Au(III) reacted with a different adsorption site from Pd(II). These results enabled to separate the metals using a column packed with PT100S.  相似文献   

5.
A new thiosemicarbazidе-modi?ed silica gel (SG-THSC) sorbent was prepared. The sorbent was quantified by adsorption of mercury ions on silica gel, desorption and then spectrophotometry detection of mercury ions. The retention parameters (sample flow rate, eluent type, sample volume, presence of foreign ions, shaking time, sample flow rate and volume, eluent condition, interfering substances) were investigated. The quantitative recovery (>95%) of Hg(II) ions could be obtained by use of 5 mL of 6 mol L?1 HCl. The adsorption capacity of SG-THSC was found to be 98.3 mg g–1 at optimum pH. The maximum preconcentration factor was 400. The technique detection limit was 70 ng L–1, and the relative standard deviation was lower than 4.0% (n = 6). The studied sorbent was applied to preconcentrate the trace Hg(II) from the mineralised residues of fish and seawater samples.  相似文献   

6.
《分离科学与技术》2012,47(10):1497-1506
The adsorption and separation of platinum(IV) and palladium(II) chlorido species ([PtCl6]2? and [PdCl4]2?) on silica-based microparticles functionalized with ammonium centers based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) were investigated. The functionalized sorbent materials were characterized using SEM, XPS, BET, and FTIR. The sorbents were used in the batch and column study for adsorption and selective separation of [PtCl62? and PdCl4]2?. The adsorption model for both [PtCl6]2? and [PdCl4]2? on the different sorbent materials fitted the Freundlich isotherm with R2 values > 0.99. The S-TETA sorbent material was palladium(II) specific. Pd(II) loaded on the silica column was recovered using 3% m/v thiourea solution as the eluting agent. Separation of platinum and palladium was achieved by selective stripping of [PtCl6]2? with 0.5 M of NaClO4 in 1.0 M HCl while Pd(II) was eluted with 0.5 M thiourea in 1.0 M HCl. The separation of palladium (Pd) from a mixture containing platinum (Pt), iridium (Ir), and rhodium (Rh) was successful on silica functionalized with triethylenetriamine (TETA) showing specificity for palladium(II) and a loading capacity of 0.27 mg/g. S-TETA showed potential for use in the recovery of palladium from platinum group metals such as from solutions of worn out automobile emission control catalytic convertors and other secondary sources.  相似文献   

7.
《分离科学与技术》2012,47(16):2399-2407
A new phenol–formaldehyde based chelating resin containing 4-(2-thiazolylazo) resorcinol (TAR) functional groups has been synthesized and characterized by Fourier transform infrared spectroscopy and elemental analysis. Its adsorption behavior for Cu(II), Pb(II), Ni(II), Co(II), Cd(II), and Mn(II) has been investigated by batch and column experiments. The chelating resin is highly selective for Cu(II) in the pH range 2 ~ 3, whereas alkali metal and alkaline earth metal ions such as Na(I), Mg(II), and Ca(II) are not adsorbed even at pH 6. Quantitative recovery of most metal ions studied in this work except Co(II) is achieved by elution with 2M HNO3 at a flow rate of 0.2 mL min?1. A similar trend is observed for distribution coefficient values. The quantitative separations achieved on a mini-column of chelating resin include Cd(II) – Cu(II), Mn(II) – Pb(II), Co(II) – Cu(II), Mn(II) – Ni(II), and Mn(II) – Co(II) – Cu(II). The recovery of copper(II) is quantitative (98.0–99.0%) from test solutions (10–50 mg/L) by 1 mol/L HNO3-0.01 mol/L EDTA. The chelating resin is stable in acidic solutions below 2.5 M HNO3 or HCl as well as in alkaline solution below pH 11. The adsorption behavior of the resin towards Cu(II) was found to follow Langmuir isotherm and second order rate.  相似文献   

8.
《分离科学与技术》2012,47(9):1344-1352
In this study, 3-mercaptopropyltriethoxysilane (MPTS) modified mesoporous silica based on multiwalled carbon nanotubes (MWCNTs@mSiO2-MPTS) was successfully prepared. The adsorption material was characterized and used for adsorbing Hg(II) ions from aqueous solution. The equilibrium data conformed better to the Langmuir isotherm with maximum adsorption capacity calculated 349.65 mg/g at 40ºC. The kinetics analysis revealed the adsorption process fitted well with the pseudo-second-order kinetic model. The thermodynamic parameters indicated the adsorption process was spontaneous and endothermic. All results obtained suggested that MWCNTs@mSiO2-MPTS may be employed as an efficient material for the adsorption or preconcentration of Hg(II) ions from aqueous solution.  相似文献   

9.
Thiourea‐formaldehyde (TUF), a well‐known chelating resin, has been synthesized and it was used in the adsorption, selective separation, and concentration of Pd(II) ions from Fe(III), Co(II) Ni(II), and Cu(II) base metal ions. The composition of the synthesized resin was determined by elemental analysis. The effect of initial acidity/pH and the adsorption capacity for Pd(II) ions were studied by batch technique. The adsorption and separation of Pd(II) were then examined by column technique. FTIR spectra and SEM/EDS analysis were also recorded before and after the adsorption of Pd(II). The optimum pH was found to be 4 for the adsorption. The adsorption data fitted well to the Langmuir isotherm. The maximum adsorption capacity of the TUF resin for Pd(II) ions was found to be 31.85 mg g−1 (0.300 mmol g−1). Chelating mechanism was effective in the adsorption. Pd(II) ions could be separated efficiently from Fe(III), Cu(II), Ni(II), and Co(II) ions using TUF resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
《分离科学与技术》2012,47(9-10):2386-2395
Abstract

In chloride media, chloropalladium(II) species are adsorbed onto tannin gel particles through an inner-sphere redox reaction mechanism containing the intermediate step, formation of a ligand-substituted Pd(II)-tannin complex. In this Pd(II) adsorption process, it was observed that the adsorption rate can be increased by introducing Br?, a softer ligand than Cl?, into the aqueous chloride solution. The formation of mixed-ligand palladium(II) complexes accelerates the rate of ligand-substitution reactions with the hydroxyl groups of tannin gel by the trans effect. The adsorption condition can be optimized by controlling the [Brtot]/[Cltot] ratio, in which the predominant Pd(II) species are bromo-chloro palladium(II) complexes, the favorable species for the trans effect.  相似文献   

11.
A triazine-hexamine (TAPEHA) polymer demonstrating high acid-resistance, good affinity to noble metals, and a high density of amine and triazine functional groups has been designed and synthesized. The obtained polymer was used as an adsorbent for the recovery of palladium (II) ions from chloride-containing solutions. Effects of pH, pCl, contact time, initial Pd(II) concentration, and temperature on adsorption were investigated and optimized by batch adsorption experiments. The pseudo second-order kinetic equation provides the best correlation for the process. While five isotherms were used, the nonlinear resolution of the Langmuir isotherm equation has been found to provide the closest fit to the equilibrium data. The monolayer adsorption capacity which is highest among literature is 517.2 mg/g. All thermodynamic parameters suggest that Pd(II) adsorption onto TAPEHA particles is a spontaneous, physisorptive, and exothermic process. The formation of TAPEHA and Pd-adsorbed TAPEHA has been characterized by FE-SEM, EDAX, XRD, and FTIR instrumentations. Adsorption of the negatively charged chloropalladium (II) species mostly takes place via ligand exchange mechanism. Ease of synthesis and low cost, coupled with highly efficient and rapid removal of Pd(II) ions, make TAPEHA an attractive adsorbent.  相似文献   

12.
Various cross‐linked (4, 8, and 12%) gel‐type weak‐base poly(4‐vinylpyridine) (PVP) resins were studied for palladium recovery from nitric acid medium. The sorption of palladium was found to decrease with an increase in cross‐linkage of the resin. 8 and 12% PVP resins exhibited maximum D Pd(II) values at 2–6 M HNO3, whereas 4% PVP resin showed maximum D Pd(II) values at lower acidities (0.1 M HNO3). FT‐IR, SEM, and XPS techniques were used for the characterization of palladium‐loaded resins. Detailed studies were carried out with the resin of modest cross‐linkage i.e., 8% PVP resin. The sorption isotherm studies revealed that the maximum palladium loading approaches the theoretical capacity of the resin, presuming the sorption of palladium as divalent anion at 4 M HNO3. The pseudo‐second order kinetics model yielded the best fit for the experimental data of sorption kinetics. An increase in temperature accelerates the rate of palladium extraction and also the addition of chloride ions increases the palladium uptake. Column studies were performed using 4 and 8% PVP resins in 2 and 4 M nitric acid concentrations. The loaded palladium could be eluted efficiently with acidic thiourea solution.  相似文献   

13.
ABSTRACT

The separation of gold and palladium ions in hydrochloric acid solutions by strong anion Type II exchange resins is studied in batch and column operations. Increases in the hydrochloric acid concentration and the temperature of the adsorption process have the effect of decreasing the adsorption capacity and the separation factor of both metals. A faster kinetics of the adsorption process of both ions results from temperature increase and this effect is higher for gold ions as a result of greater changes in its diffusivity. Although the adsorption capacity of palladium ions is lower at equilibrium conditions, the adsorption isotherms obtained suggest that they are more strongly retained by the polymers.

The high capacities of these resins for both metals permits their use in the preconcentration of gold and palladium but their application in quantitative separation is restricted by the co-elution of up to% of the interfering ion during the desorption process. The best method for ion desorption is sequential elution with% ammonia for palladium recovery followed by 0·5M thiourea in HCI 1M for the recovery of gold.  相似文献   

14.
《分离科学与技术》2012,47(4):879-895
Abstract

Many direct methods cannot easily be used to measure analytes such as Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) ions in sea and river water since these elements are present at very low concentration and the sample has a very complex matrix. In this study a method was developed to preconcentrate these ions by solid phase extraction within a column system using a newly synthesised 2,3‐dihydroxy benzaldehyde modified silica gel (SGDHB). Different parameters, such as pH, resin amount, eluent type, eluent volume, sample flow rate, preconcentration factors, and resin capacity were determined for the preconcentration of metal ions with the resin. Samples (125–500 ml) containing metal ions were passed through the column filled with SGDHB resin so that metal ions were retained on the column. The preconcentrated analytes were then eluted with 15 mL of 0.1 M HCl. The metal concentrations in the eluate were measured by FAAS. A sample and eluent flow rate of 1.12 and 0.56 ml/min respectively was used. Estimates of accuracy, precision, and detection limits were determined. In addition, analysis of the CRM LGC 6156 harbor sediment was undertaken, using the resin to isolate the analytes from potential interferences. Good agreement with certified values was obtained, indicating that the method is equally applicable to the analysis of water samples and to digests of solid materials.  相似文献   

15.
The precious metals and their alloys are extensively applied in refineries and the chemical and electronic industries as well as in medicine. Their small amounts in nature and extensive exploitation from natural resources are a serious obstacle as far as their application is concerned. High prices of palladium favour its recovery from recyclable materials and industrial wastes. Ion-exchange chromatography is one of the physicochemical methods of noble metal ion recovery. A study was done on the possibility of selective removal of palladium (II) microquantities from the model 0.1-6.0 M HCl, 0.1-0.9 M HCl-0.9 - 0.1 M HNO3, 1.0 M ZnCl2 - 0.1 M HCl and 1.0 M AlCl3-0.1 M HCl systems on weakly, intermediate and strongly basic anion exchangers. The sorption research of Pd (II) on various types of anion exchangers was carried out by means of dynamic and static methods. The working ion-exchange capacities, weight and bed distribution coefficients were calculated from the breakthrough curves of palladium (II) ions. From the static studies the recovery factors of Pd (II) depending on the anion exchanger-solution contact time in the model systems under discussion were determined.  相似文献   

16.
Silica aerogel surface modifications with chelating agents for adsorption/removal of metal ions have been reported in recent years. This investigation reported the preparation of silica aerogel (SA) adsorbent coupled with metal chelating ligands of 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion (AMTT) and its application for selective adsorption of Hg(II) ion. The adsorbent was characterized by Fourier transform infrared spectra (FTIR) and thermo gravimetric analysis (TGA) measurements, nitrogen physisorption and scanning electron microscope (SEM). Optimal experimental conditions including pH, temperature, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data given by the Langmuir isotherm equation and the maximum adsorption capacity of the modified silica gel and silica aerogel was 142.85 and 17.24mgg?1, respectively. Thermodynamic parameters such as Gibbs free energy (ΔG o ), standard enthalpy (ΔH o ) and entropy change (ΔS o ) were investigated. The adsorbed Hg(II) on the SA-AMTT adsorbents could be completely eluted by 1.0M KBr solution and recycled at least four times without the loss of adsorption capacity. The results of the present investigation illustrate that modified silica aerogel with AMTT could be used as an adsorbent for the effective removal of Hg(II) ions from aqueous solution.  相似文献   

17.
Poly(N-vinylimidazole) (PVIm) gels were prepared by irradiating a binary mixture of N-vinylimidazole (VIm)–water in a 60Co-γ source having 4.5 kGy/h dose rate. In the glucose oxidase (GOx) adsorption studies, affinity gels with a swelling ratio of 1100% for PVIm and 40 and 55% for Cu(II)- and Co(II)-chelated PVIm gels, respectively, at pH 6.5 in phosphate buffer were used. FTIR spectra were taken for PVIm and Cu(II)- and Co(II)-chelated PVIm, and glucose oxidase adsorption on these gels, to characterize the nature of the interactions in each species. The results show that PVIm–glucose oxidase interaction is mainly electrostatic and metal ion–chelated PVIm gel–glucose oxidase interaction is of coordinate covalent nature. Cu(II) and Co(II) ions were chelated within the gels via amine groups on the imidazole ring of the gel. Different amounts of Cu(II) and Co(II) ions [maximum 3.64 mmol/g dry gel for Cu(II) and 1.72 mmol/g dry gel for Co(II)] were loaded on the gels by changing the initial concentration of Cu(II) and Co(II) ions at pH 7.0. GOx adsorption on these gels from aqueous solutions containing different amounts of GOx at different pH was investigated in batch reactors. GOx adsorption capacity was further increased when Cu(II) and Co(II) ions were attached [up to 0.53 g GOx/g dry Co(II)-chelated PVIm gels]. More than 90% of the adsorbed GOx was desorbed in 5 h in desorption medium containing 1.0M KSCN at pH 7.0 for plain gel and 0.05M EDTA at pH 4.9 for metal-chelated gel. Nonspecific glucose oxidase adsorption on/in the metal ion–chelated PVIm gel was investigated using 0.02M of phosphate buffer solution. The nonspecific GOx adsorption was determined to be about 18% for PVIm and 8% for the metal ion–chelated PVIm gels. The ionic strength effect was investigated both on PVIm and on the metal ion–chelated PVIm gels for the glucose oxidase adsorption. It was found that ionic strength was more effective on the PVIm gel because of the electrostatic interaction between protonated gel and the deprotonated glucose oxidase side chain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 446–453, 2001  相似文献   

18.
《分离科学与技术》2012,47(15):3449-3465
Abstract

This study presents a solid phase extraction procedure based on column biosorption of Zn(II), Cu(II), and Cd(II) ions on Saccharomyces carlsbergensis immobilized on silica gel 60. The analytes were determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for the quantitative recovery of the analytes, including pH, amount of solid‐phase, eluent type and flow rate of sample solution were examined. The effect of interfering ions on the recovery of the analytes was also investigated. Under the optimum conditions, recoveries of Zn(II), Cu(II), and Cd(II) were 99±2%, 98±2%, and 100±2% at 95% confidence level, respectively for spiked water samples. The analytical detection limits for Zn(II), Cu(II), and Cd(II) were 1.14, 1.66, and 1.48 ng mL?1, respectively. The validation of the method was checked by the analysis of standard reference material (Tea leaves GBW‐07605) and spiked water, samples. The proposed method was applied for the determination of analytes in green onion, parsley, dam water, lake water, and tap water samples. The analytes has been determined in real samples with relative error lower than 8% and relative standard deviation lower than 10%.  相似文献   

19.
《分离科学与技术》2012,47(2):376-388
Abstract

Melamine‐formaldehyde‐thiourea (MFT) chelating resin were prepared using melamine (2,4,6‐triamino‐1,3,5‐triazine), formaldehyde, and thiourea and this resin has been used for separation and recovery of silver(I) ions from copper(II) and zinc(II) base metals and calcium(II) alkaline‐earth metal in aqueous solution. The MFT chelating resin was characterized by elemental analysis and FT‐IR spectra. The effect of pH, adsorption capacity, and equilibrium time by batch method and adsorption, elution, flow rate, column capacity, and recovery by column method were studied. The maximum uptake values of MFT resin were found as 60.05 mg Ag+/g by batch method and 11.08 mg Ag+/g, 0.052 mg Zn2+/g, 0.083 mg Cu2+/g and 0.020 mg Ca2+/g by column method. It was seen that MFT resin showed higher uptake behavior for silver(I) ions than base and earth metals due to chelation.  相似文献   

20.
ABSTRACT

Aqueous solutions of 4,4′-(1,2-ethanediyldinitrilo)bis-(2-pentanone) (EDDBP) have been used in a novel green procedure for the physical modification of silica gel (SG) for solid-phase extraction and preconcentration of Ni(II) ion. Optimization experiments were carried out at 301 ± 1 K by batch technique. The EDDBP-modified SG was characterized using X-ray Diffraction Spectroscopy (XRD) and Brunaeur-Emmett-Teller (BET) determinations. The adsorption isotherm and kinetic models indicated a physisorption process. The modified SG showed moderate to high adsorption capacity values for Ni(II) ion (~98% removal efficiency) at pH 8. A sorption mechanism for Ni(II) chelation with EDDBP-modified-SG was proposed. These results suggest the procedure has advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号