首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyanilinezirconium(IV) arsenate composite cation exchange material was synthesized under different experimental conditions by the incorporation of polyaniline into the matrices of inorganic precipitate (zirconium(IV)arsenate). The experimental parameters such as concentration, mixing volume ratio, and pH were established for the synthesis of the material. Ion-exchange material that was synthesized at pH 1.0 showed an ion exchange capacity of 1.33 meq g−1 for Na+ ions. The composite material exhibits improved ion-exchange capacity along with chemical and thermal stability. The exchanger was characterized based on FTIR, TGA, XRD, and SEM analysis. The X-ray diffraction study shows semi-crystalline nature of the material. The distribution coefficient studies (Kd) of metal ions on the material were performed in diverse solvent systems. Based on Kd values the material was found to be selective for Pb(II) and Hg(II) ions. Some analytically important binary separations of metal ions in synthetic mixtures viz. Ba2+-Pb2+, Pb2+-Ni2+, Cd2+-Hg2+, Ni2+-Hg2+, Zn2+-Pb2+, Ca2+-Bi3+, Al3+-Hg2+, and Ca2+-Pb2+ were achieved on the columns of polyanilinezirconium(IV) arsenate cation exchanger. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Polyaniline stannic silicomolybdate, an organic–inorganic composite material was synthesized by mixing polyaniline, an electrically conducting organic polymer into the matrices of inorganic precipitate of stannic silicomolybdate. The experimental parameters such as mixing volume ratio and pH were established for the synthesis of the material. The material was found granular, thus suitable for column operations. Polyaniline stannic silicomolybdate shows better ion exchange capacity and thermal stability. The exchanger was characterized on the basis of instrumental techniques such as FTIR, TGA, DTA XRD and SEM. The X-ray diffraction study showed semi-crystalline nature. The elution behavior of the material was also examined. The SEM micrographs show the difference in surface morphology of inorganic component and the composite material. Distribution coefficient studies were performed for different metal ions in varied solvent systems such as Triton X-100, trichloroacetic acid and acetic acid. The effect of temperature on the distribution coefficient was also studied. It was found that 40 °C appeared to be the most suitable temperature. The material was found to be selective for Pb2+ ion. On the basis of distribution coefficient values, some analytically important binary separations of metal ions viz. Mg2+–Pb2+, Zn2+–Pb2+, Cd2+–Pb2+ and Mg2+–Cu2+ were achieved on polyaniline stannic silicomolybdate columns. The practical utility of polyaniline stannic silicomolybdate was explored by achieving quantitative separation of Pb2+ in industrial waste effluents from battery manufacturing units.  相似文献   

3.
《分离科学与技术》2012,47(4):854-873
Abstract

Metal ion binding with a flowing system to a biosorbent comprised of cultured cell-wall fragment within a polysilicate matrix has been investigated. Solutions containing 0.10 mM Pb2+, Cu2+, Ni2+, Cd2+, and Zn2+ were exposed to the material in combinations of two, three, and five metals while simultaneously monitoring the concentration of all metals in the effluent stream. A relative affinity order of Pb2+ > Cu2+ >> Zn2+ ≈ Cd2+ > Ni2+ was determined when all five metal ions were exposed to the material. Lower-affinity metal ions were exposed to the material sequentially. Both metal-specific and common binding sites were observed for each metal ion. The presence of both binding sites that are common to all metal ions investigated and sites that appear to be unique for each metal ion could significantly impact the utility of single-metal ion studies on the application of such biosorbents for the selective removal of metal ions from natural water.  相似文献   

4.
《分离科学与技术》2012,47(5):847-857
A composite cation exchange material acetonitrile stannic(IV) selenite was prepared under different experimental conditions. The ion exchange capacity of the material was improved from 0.75 to 1.83 meq g?1 in comparison to its inorganic counterpart, stannic selenite. The material was characterized on the basis of X-ray, TGA, FTIR, and SEM studies. Ion-exchange capacity, pH titration, elution behavior, and distribution studies were also carried out to determine the preliminary ion-exchange properties of the material. Furthermore, it was investigated that this ion exchange material has a good reusability after 8 times regeneration. The sorption behavior of metal ions was studied in nonionic surfactants namely triton x-100 and tween. On the basis of distribution coefficient studies, several binary separations of metal ions viz- Pb2+-Th4+, Ni2+-Th4+, Ni2+-Zn2+, Cu2+-Ce4+, Al3+-Bi3+, and Al3+Zn2+ was achieved on the packed column of this ion exchange material. The practical applicability of this cation-exchanger was demonstrated in the separation of Th4+ from a synthetic mixture of Th4+, Ca2+, Sr2+, Ni2+, and Mg2+ as well as Cu2+ and Zn2+ from a brass alloy sample. Thus, all the studies suggest that acetonitrile stannic(IV) selenite has excellent potential for the removal of metal ionic pollutant species from aqueous media effectively.  相似文献   

5.
Hydroxybenzoic acid group has been incorporated onto guar gum by modified Porath's method of functionalization of polysaccharides. The newly synthesized guar gum 4‐hydroxybenzoic acid (GHBA) resin was characterized by Fourier‐transform infrared spectroscopy, elemental analysis, ion‐exchange capacity, column reusability, and physicochemical properties. The distribution coefficient (Kd) values and effect of pH on chelation of these metal ions using batch method were studied. The separations of mixture of Fe2+, Zn2+, Cu2+, Cd2+, and Pb2+ metal ions on GHBA resin on the basis of their distribution coefficient at various pH were also achieved using column chromatography. The effect of experimental parameters such as pH, treatment time, agitation speed, temperature, adsorbent dose, initial metal ion concentration, and flow rate on the removal of metal ions has been also studied. GHBA resin is effective adsorbents for the removal of different toxic metal ions from aqueous solutions and follows the order: Fe2+ > Zn2+ > Cu2+ > Cd2+ > Pb2+. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
《分离科学与技术》2012,47(1):164-178
Abstract

The adsorption of different metal ions on acrylamidezirconium (IV) arsenate has been studied. The effect of surfactant concentration (Tween 80‐R and Tritron X‐100) on sorption of different metal ions acrylamidezirconium (IV) arsenate was explored. The effect of experimental parameters such as contact time, temperature, and pH on adsorption of Pb2+ions was studied. The promising feature of the material is its specificity for Pb2+ ions. A new PVC based Pb2+ ion‐selective electrode using acrylamidezirconium (IV) arsenate as electro‐active material has been fabricated. The electrode works well over a wide range of concentration 1×10?1 M–1×10?7 M with a Nerstian slope of 30±1 mV per decade. The sensor shows the short response time of 20 seconds and can operate in the pH range of 2–7. The sensor can be used for the period of over 4 months with out deviation in response characteristics. The electrode has been successfully used as an indicator electrode for potentiometric titration of Pb2+ ions in solution against EDTA solution.  相似文献   

7.
Water‐insoluble polyaspartyl polymers were synthesized by using water as medium instead of organic medium. Taking Ca2+ as a reference, the binding of several heavy‐metal ions, including Pb2+, Cd2+, Hg2+, Cr3+, Cu2+, and Mn2+, by polyaspartyl polymers was studied. The experimental results revealed that polyaspartate is an excellent binding agent for the investigated heavy‐metal ions. These cation ions were bound to polyaspartate polymer by the same mechanism as Pb2+, which can be explained by ion exchange model. Since polyaspartate has a protein‐resembling structure that is sensitive to trace heavy metal, it was used to remove some trace heavy‐metal elements in Chinese herbal medicines. It was found that polyaspartate material was an effective agent for the removal of Pb2+, Cd2+, and Hg2+ ions from glycyrrhizin, angelica, and gynostemma pentaphyllum. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
《分离科学与技术》2012,47(8):2117-2143
Abstract

The aim of this work is to study the effectiveness of regional, low-cost natural clinoptilolitic zeolite tuff in heavy metal ions removal from aqueous solution, through comparative study with commercial granulated activated carbon. The equilibrium of adsorption of Cd2+, Pb2+, and Zn2+ on both adsorbents have been determined at 25, 35, and 45°C in batch mode. The granulated activated carbon has shown around three times higher adsorption capacity for Cd2+ and Zn2+ than natural zeolite, and almost the same adsorption capacity for Pb2+ as the natural zeolite. The metal ion selectivity series Pb2+ > Cd2+ > Zn2+, on a mass basis, has been obtained on both adsorbents. The Langmuir and Freundlich model have been used to describe the adsorption equilibrium. The thermodynamic parameters were calculated from the adsorption isotherm data obtained at different temperatures. The study of the influence of the acidity of the metal ion aqueous solution has shown an increase of metal ion uptake with increase of the pH. The sorption mechanism of Cd2+, Pb2+, and Zn2+ on natural zeolite changes from ion-exchange to ion-exchange and adsorption of metal-hydroxide with increase of the pH from 2 to 6 (and 7 for Zn2+). The preliminary cost calculation, based on adsorbents maximum adsorption capacity and their price, have revealed the potential of natural zeolite as an economic alternative to the granulated activated carbon in the treatment of heavy metal polluted wastewater.  相似文献   

9.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

10.
A new cationic exchange material, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) with cerium (IV) phosphate (AOT–CeP) has been synthesized. The characterization of the ion exchanger was performed by using infra red spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo gravimetric analysis/differential thermo gravimetric analysis (TGA/DTA/DTG) and elemental analysis. The ion exchange properties like ion exchange capacity, elution and concentration behavior of AOT–CeP were determined by taking the material into a column and elution of H+ was done by NaNO3. The thermal stability of the ion exchanger was studied by determining ion exchange capacity after heating to different temperatures for one hour. The adsorption studies on AOT–CeP demonstrated that the material is selective for Cu2+, Pb2+, Cd2+, Zn2+ and Hg2+ ions. AOT–CeP was found to be effective for the separation of Cu2+, Pb2+, Cd2+, Zn2+ and Hg2+ ions in the presence of alkali metals/alkaline earth metals. This cationic exchanger was also effective for the removal of Cu2+, Pb2+, Cd2+, Zn2+ and Hg2+ ions in the presence of acid and other transition metal ions. Thus, AOT–CeP can be used for the removal of these ions from the waste water during its treatment.  相似文献   

11.
《分离科学与技术》2012,47(15):3920-3935
Abstract

A novel hetropolyacid-based cation exchanger cerium(III) tungstosilicate was synthesized in amorphous form by mixing tungstosilisic acid (TSA) solutions to cerium(III) nitrate solutions at different Ce:TSA ratios. The materials were precipitated from the liquid phase by raising the pH of the solutions using sodium hydroxide. The produced ion exchange powders were characterized using powder X-ray diffractometry, thermogravimetry, infrared spectrometry, inductively coupled plasma and atomic absorption elemental analysis. The materials which were dried at 50°C were found to be stable in water, dilute acids, alkaline solutions, and high temperature up to 1000°C. The Ion exchange properties of the synthesized samples were studied by measuring the distribution coefficients (Kd) for 29 metal ions in demineralized water and nitric acid media. On the basis of Kd values, some quantitative separations such as Co2+-Pb2+, Cr3+-Zr4+, and Mo6+- W6+ are achieved on their columns.  相似文献   

12.
Two cation-exchange materials, aluminium tungstate (AT) and sodium dodecyl sulphate–aluminium tungstate (SDS–AT), were synthesized. Both samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The distribution coefficients for various metal ions on SDS–AT cation-exchange material were performed in different solvent systems. On the basis of distribution coefficient values, the SDS–AT cation-exchange material was found to be selective for the very toxic metal ion, Cr3+. The hybrid cation-exchange material offered a variety of technological opportunities for quantitative determination and separation of Cr3+ from synthetic mixtures of metal ions. Some binary and ternary separations of metal ions; viz., Cd2+–Cr3+, Zn2+–Cr3+, Cu2+–Cr3+, Pb2+–Cr3+, Mg2+–Pb2+–Cr3+ and Mg2+–Cd2+–Cr3+, were performed using a packed column of this material.  相似文献   

13.
This article reports the synthesis, characterization, and ion exchange properties of a terpolymer. The terpolymer resin salicylic acid‐diaminonaphthalein‐formaldehyde (SDNF) was synthesized by the condensation of salicylic acid and diaminonaphthalein with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer resin was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance spectroscopy, and UV–Visible spectral studies. The number average molecular weight of the resin was determined by nonaqueous conductometric titration. Chelation ion exchange properties have also been studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+ ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe3+, Cu2+, and Ni2+ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
《分离科学与技术》2012,47(8):1346-1357
A novel hybrid cation exchange material of the class of tetravalent metal acid (TMA) salt, titanium diethylene triamine pentamethylene phosphonate (TiDETPMP) has been synthesized by the sol gel method. The material has been analyzed by spectroscopy and thermal methods. Physico-chemical and ion exchange characteristics have also been studied. The distribution coefficient (K d ) has been determined in aqueous as well as various electrolyte media/concentrations for Co2+, Ni2+, Cu2+, Zn2+ (transition metal ions) and Cd2+, Hg2+, Pb2+, Bi3+ (heavy metal ions) using TiDETPMP. Based on the differential affinity/selectivity, the breakthrough capacity (BTC) and elution behavior of various metal ions towards TiDETPMP, a few binary and ternary metal ions separations have been carried out.  相似文献   

15.
Chromatographic column separations of toxic metal ions from industrial wastewater were achieved in acid media at optimized (Kd) values with a synthesized cation exchange TABA resin. The prepared TABA resin was characterized by FTIR, elemental, and thermogravimetric analysis. Studies of total ion exchange capacity, resin durability, and swelling were carried out. The distribution coefficient values of metal ions, viz Cu2+, Fe2+, Zn2+, Cd2+ and Pb2+ at different pH, were also studied using a batch equilibration method. The different factors affecting metal ions adsorption on this substrate, such as treatment time, agitation speed, and temperature, were studied in detail.  相似文献   

16.
Copolymers (8‐HQ5‐SAOF) were synthesized by the condensation of 8‐hydroxyquinoline 5‐sulphonic acid (8‐HQ5‐SA) and oxamide (O) with formaldehyde (F) in the presence of acid catalyst. Four different copolymers were synthesized by using varied molar proportion of the reacting monomers. Copolymer resin composition has been determined on the basis of their elemental analysis and average molecular weights of these resins were determined by conductometric titration in nonaqueous medium. Viscometric measurement in dimethyl sulphoxide (DMSO) has been carried out with a view to ascertain the characteristic functions and constants. Electronic spectra, FTIR, and proton nuclear magnetic resonance spectra were studied to elucidate the structures. The newly synthesized copolymer proved to be a selective chelating ion‐exchange copolymer for certain metals. The chelating ion‐exchange properties of this synthesized copolymer was studied for different metal ions such as Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, and Pb2+. A batch equilibrium method was used in the study of the selectivity of metal ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion only for representative copolymer 8‐HQ5‐SAOF‐I due to economy of space. The study was carried out over a wide pH range, shaking time, and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+, Cu2+, and Ni2+ ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
ABSTRACT

The ion exchange behavior of a sulfur-modified biotite towards Pb2+, Hg2+, Co2+, Cu2+, Cd2+ and Zn2+ ions has been studied. The ion exchange isotherms of divalent cations were determined and concentration equilibrium constants as a function of metal loading were analyzed. Sulfur modified biotite exhibits high affinity for Hg2+, Pb2+, Cu2+ and Cd2+ ions in individual solutions and in the presence of electrolytes. About 200 mg Hg/g uptake in 1·10?3 M Hg2+ solution and ~ 35 mg Hg/g in groundwater simulant or an alkaline simulant 2 M in NaN03 + 1 M in NaOH was found. The possibility of a complex ion exchange and precipitation mechanism of the sulfur modified biotite towards the soft cations is proposed.  相似文献   

18.
Poly(acrylamide) (PACM) used in this study was prepared through an effective atom transfer radical polymerization process and characterized by NMR, FTIR, and thermo gravimetric analysis. Resulting polymer was used for the uptake of heavy metal ions from aqueous solution. Partition coefficient, retention capacity, and metal ion uptake behavior in aqueous solution of PACM at different monomer percent conversions and effect of parameters for optimization of polymerization reaction gives thermally stable PACM. Efficiency of metal ion uptake of different molecular weights of PACM were tested in batches for Ni2+, Pb2+, Cu2+, Zn2+, and Hg2+ ions in single metal solution. Metal ion sorption capacities increase with increase in polymer concentration. Metal ion sorption capacities in single metal system were 6.3 mg g?1 Ni2+, 6.0 mg g?1 Pb2+, 6.9 mg g?1 Cu2+, 6.2 mg g?1 Zn2+, 22.4 mg g?1 Hg2+ for PACM of 88% conversion (Mn = 19,850). Uptake by the PACM indicates that they are effective in removing metal ions from single metal ion solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A novel polymeric ligand having 2,2′:6′,2″‐terpyridine as pendant group was prepared through a Williamson type etherification approach for the reaction between 4′‐hydroxy‐2,2′: 6′,2″‐terpyridine and the commercially available 4‐chloromethyl polystyrene. The chelating properties of the new polymer toward the divalent metal ions (Cu2+, Zn2+, Ni2+, and Pb2+) in aqueous solutions was studied by a batch equilibration technique as a function of contact time, pH, mass of resin, and concentration of metal ions. The amount of metal‐ion uptake of the polymer was determined by using atomic absorption spectrometry. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Pb2+ and that the metal‐ion uptake follows the order: Pb2+ > Cu2+ > Zn2+ > Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
《分离科学与技术》2012,47(10):2303-2314
Abstract

Potassium‐dicyclohexyl‐18‐crown‐6 was used as a selective and efficient carrier for the uphill transport of thallium (III) ion as [TlCl4]? complex ion through a chloroform bulk liquid membrane. By using oxalate anion as a metal ion acceptor in the receiving phase, the amount of thallium (III) transported across the liquid membrane after 120 min was 96±2%. The selectivity and efficiencies of thallium transport from aqueous solutions containing Cu2+, Zn2+, Ni2+, Cd2+, Pb2+, Co3+, Mn2+ , Cr3+, Mg2+, Ca2+, K+, Na+, and Fe3+ ions were investigated. In the presence of Na3PO4 (0.01 M) at pH=3 as a suitable precipitation agent in the source phase, the interfering effect of Pb2+ ion were diminished drastically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号