首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct air capture (DAC) of CO2 is becoming increasingly important for reducing greenhouse gas concentrations in the atmosphere. However, the cost and energy requirements associated with DAC make it less economically feasible than carbon capture from flue gases. While various methods like solid sorbents and gas–liquid absorption have been explored for DAC, membrane processes have only recently been investigated. The objective of this study is to examine the separation performance of a membrane unit for capturing CO2 from ambient air. The performance of a membrane depends on several factors, including the composition of the feed gas, pressure ratio, material selectivity, and membrane area. The single-stage separation process with the co-current flow and constant permeability flux model is evaluated using a commercial module integrated with a process simulator to separate a binary mixture of carbon dioxide and nitrogen to assess the sensitivity of selectivity on purity and recovery of CO2 in permeate, and power requirement. Additionally, three levels of CO2 reduction from the feed stream to the retentate stream (25%, 50%, and 75%) are studied. A trade-off between purity and recovery factor is observed, and achieving high purity in permeate requires high concentration in the retentate.  相似文献   

2.
《分离科学与技术》2012,47(10):1385-1394
Carbon dioxide capture and storage (CCS) has been propounded as an important issue in greenhouse gas emissions control. In this connection, in the present article, the advantages of using polymeric membrane for separation of carbon dioxide from CO2/N2 streams have been discussed. A novel composition for fabrication of a blend membrane prepared from acrylonitrile-butadiene-styrene (ABS) terpolymer and polyethylene glycol (PEG) has been suggested. The influence of PEG molecular weight (in the range of 400 to 20000) on membrane characteristics and gas separation performance, the effect of PEG content (0–30 wt%) on gas transport properties, and the effect of feed side pressure (ranging from 1 to 8 bar) on CO2 permeability have been studied. The results show that CO2 permeability increases from 5.22 Barrer for neat ABS to 9.76 Barrer for ABS/PEG20000 (10 wt%) while the corresponding CO2/N2 selectivity increases from 25.97 to 44.36. Furthermore, it is concluded that this novel membrane composition has the potential to be considered as a commercial membrane.  相似文献   

3.
The paper takes into consideration a new approach for CO2 capture and transport, based on the formation of solid CO2 hydrates.Carbon dioxide sequestration from power plants can take advantage of the properties of gas hydrates. The formation and decomposition of hydrates from various N2-CO2 mixtures has been studied experimentally in a 2 l reactor, to determine the CO2 separation in terms of hydrate composition and residual CO2 content in the reacted gas.Carbon dioxide acts as a co-former for the production of hydrates containing nitrogen, besides CO2. The mixed hydrates that are obtained are less stable than simple CO2 hydrates. When CO2 content in the flue gas is higher than 30% by volume, the hydrates formed at 5 MPa are sufficiently concentrated (about 70% CO2) and carbon dioxide reduction in the reacted gas is acceptable.The application of a process based on hydrate formation could be especially interesting (for CO2 capture and transport) when connected to an oxy-coal combustion process; in this case the CO2 content in the flue gas is very high and the hydrate formation is greatly facilitated.  相似文献   

4.
In the CO2 capture process from coal-derived flue gas where amine solvents are used, the flue gas can entrain small liquid droplets into the gas stream leading to emission of the amine solvent. The entrained drops, or mist, will lead to high solvent losses and cause decreased CO2 capture performance. In order to reduce the emissions of the fine amine droplets from CO2 absorber, a novel method using charged colloidal gas aphron (CGA) generated by an anionic surfactant was developed. The CGA absorption process for MEA emission reduction was optimized by investigating the surfactant concentration, stirring speed of the CGA generator, and capture temperature. The results show a significant reduction of MEA emissions of over 50% in the flue gas stream exiting the absorber column of a pilot scale CO2 capture unit.  相似文献   

5.
Fossil fuel power plants are one of the major sources of electricity generation, although invariably release greenhouse gases. Due to international treaties and countries regulations, CO2 emissions reduction is increasingly becoming key in the generators’ economics. NGCC power plants constitute a widely used generation technology, from which CO2 capture through a post-combustion and MEA absorption option constitutes a technological challenge due to the low concentration of pollutants in the flue gas and the high energy requirements of the sequestration process.  相似文献   

6.
The energy penalty associated with solvent based capture of CO2 from power station flue gases can be reduced by incorporating process flow sheet modifications into the standard process. A review of modifications suggested in the open and patent literature identified several options, primarily intended for use in the gas processing industry. It was not immediately clear whether these options would have the same benefits when applied to CO2 capture from near atmospheric pressure combustion flue gases. Process flow sheet modifications, including split flow, rich split, vapour recompression, and inter-stage cooling, were therefore modelled using a commercial rate-based simulation package. The models were completed for a Queensland (Australia) based pilot plant running on 30% MEA as the solvent. The preliminary modelling results showed considerable benefits in reducing the energy penalty of capturing CO2 from combustion flue gases. Further work will focus on optimising and validating the most relevant process flow sheet modifications in a pilot plant.  相似文献   

7.
The 2007 IEA's World Energy Outlook report predicts that the world's energy needs will grow by 55% between 2005 and 2030, with fossil fuels accounting for 84% of this massive projected increase in energy demand. An undesired side effect of burning fossil fuels is carbon dioxide (CO2) emission which is now widely believed to be responsible for the problem of global warming. Various strategies are being considered for addressing the increase in demand for energy and at the same time developing technologies to make energy greener by reducing CO2 emissions.One of these strategies is to ‘capture’ produced CO2 instead of releasing it into the atmosphere. Capturing CO2 and its injection in oil reservoirs can lead to improved oil recovery as well as CO2 retention and storage in these reservoirs. The technology is referred to as CCS (carbon capture and storage). Large point sources of CO2 (e.g., coal-fired power plants) are particularly good candidates for capturing large volumes of CO2. However, CO2 capture from power plants is currently very expensive. In addition to high costs of CO2 capture, the very low pressure of the flue gas (1 atm) and its low CO2 content (typically 10-15%) contribute to the high cost of CO2 capture from power plants and the subsequent compression. This makes conventional CO2 flooding (which requires very large volumes of CO2) uneconomical in many oil reservoirs around the world which would otherwise be suitable candidates for CO2 injection. Alternative strategies are therefore needed to utilize smaller sources of CO2 that are usually available around oil and gas fields and can be captured at lower costs (due to their higher pressure and higher CO2 concentration).We investigate the potential of carbonated (CO2-enriched) water injection (CWI) as an injection strategy for improving recovery from oil reservoirs with the added benefit of safe storage of CO2. The performance of CWI was investigated by conducting high-pressure flow visualization as well as coreflood experiments at reservoir conditions. The results show that CWI significantly improves oil recovery from water flooded porous media. A relatively large fraction of the injected CO2 was retained (stored) in the porous medium in the form of dissolved CO2 in water and oil. The results clearly demonstrate the huge potential of CWI as a productive way of utilizing CO2 for improving oil recovery and safe storage of potentially large cumulative quantities of CO2.  相似文献   

8.
Membrane and membrane process have been considered as one of the most promising technologies for mitigating CO2 emissions from the use of fossil fuels. In this paper, recent advances in polymeric membranes for CO2 capture are reviewed in terms of material design and membrane formation. The selected polymeric materials are grouped based on their gas transport mechanisms, i.e., solution‐diffusion and facilitated transport. The discussion of solution‐diffusion membranes encompasses the recent efforts to shift the upper bound barrier, including the enhanced CO2 solubility in several rubbery polymers and novel methods to construct shape-persisting macromolecules with unprecedented sieving ability. The carrier-bearing facilitated transport membranes are categorized based on the specific CO2-carrier chemistry. Finally, opportunities and challenges in practical applications are also discussed, including post-combustion carbon capture (CO2/N2), hydrogen purification (CO2/H2), and natural gas sweetening (CO2/CH4).  相似文献   

9.
Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and Delta Electricity have developed, commissioned and operated an A$7 million aqueous NH3 based post-combustion capture (PCC) pilot plant at the Munmorah black coal fired power station in Australia. The results from the pilot plant trials will be used to address the gap in know-how on application of aqueous NH3 for post-combustion capture of CO2 and other pollutants in the flue gas and explore the potential of the NH3 process for application in the Australia power sector. This paper is one of a series of publications to report and discuss the experimental results obtained from the pilot plant trials and primarily focuses on the absorption section.The pilot plant trials have confirmed the technical feasibility of the NH3 based capture process. CO2 removal efficiency of more than 85% can be achieved even with low NH3 content of up to 6 wt%. The NH3 process is effective for SO2 but not for NO in the flue gas. More than 95% of SO2 in the flue gas is removed in the pre-treatment column using NH3. The mass transfer coefficients for CO2 in the absorber as functions of CO2 loading and NH3 concentration have been obtained based on pilot plant data.  相似文献   

10.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

11.
Recent developments on carbon capture and storage: An overview   总被引:1,自引:0,他引:1  
The Intergovernmental Panel on Climate Change assumes the warming of the climate system, associating the increase of global average temperature to the observed increase of the anthropogenic greenhouse gas (GHG) concentrations in the atmosphere. Carbon dioxide (CO2) is considered the most important GHG, due to the dependence of world economies on fossil fuels, since their combustion processes are the most important sources of this gas. CO2 concentrations are increasing in the last decades mainly due to the increase of anthropogenic emissions. The processes involving CO2 capture and storage is gaining attention on the scientific community as an alternative for decreasing CO2 emission, reducing its concentration in ambient air. However, several technological, economical and environmental issues as well as safety problems remain to be solved, such as the following needs: increase of CO2 capture efficiency, reduction of process costs, and verification of environmental sustainability of CO2 storage. This paper aims to review the recent developments (from 2006 until now) on the carbon capture and storage (CCS) methodologies. Special attention was focused on the basic findings achieved in CCS operational projects.  相似文献   

12.
To demonstrate process feasibility of in situ CO2 capture from combustion of fossil fuels using Ca-based sorbent looping technology, a flexible atmospheric dual fluidized bed combustion system has been constructed. Both reactors have an ID of 100 mm and can be operated at up to 1000 °C at atmospheric pressure. This paper presents preliminary results for a variety of operating conditions, including sorbent looping rate, flue gas stream volume, CaO/CO2 ratio and combustion mode for supplying heat to the sorbent regenerator, including oxy-fuel combustion of biomass and coal with flue gas recirculation to achieve high-concentration CO2 in the off-gas. It is the authors' belief that this study is the first demonstration of this technology using a pilot-scale dual fluidized bed system, with continuous sorbent looping for in situ CO2 capture, albeit at atmospheric pressure. A multi-cycle test was conducted and a high CO2 capture efficiency (> 90%) was achieved for the first several cycles, which decreased to a still acceptable level (> 75%) even after more than 25 cycles. The cyclic sorbent was sampled on-line and showed general agreement with the features observed using a lab-scale thermogravimetric analysis (TGA) apparatus. CO2 capture efficiency decreased with increasing number of sorbent looping cycles as expected, and sorbent attrition was found to be another significant factor to be limiting sorbent performance.  相似文献   

13.
The production of energy in Pakistan as a developing country mainly depends on consumption of fossil fuels, which are the main sources of greenhouse gas (GHG) emissions. These emissions can be mitigated by implementing carbon capture and storage (CCS) in running plants. An overview of the current and future potentials of Pakistan for CCS is provided, indicating a great potential for this technology to capture CO2 emissions. The amine CO2 capture process as the most mature procedure is currently applied in many oil and gas companies in Pakistan, which can be employed to capture CO2 from other industries as well. Pakistan has a great CO2 storage potential in oil, gas, and coal fields and in saline aquifer as well as significant resources of Mg and Ca silicates suitable as feedstock in the carbon mineralization process. For further development and implementation of CCS technologies in Pakistan, economic and policy barriers as the main obstacles should be alleviated.  相似文献   

14.
A systematic analysis of several vacuum swing adsorption (VSA) cycles with Zeochem zeolite 13X as the adsorbent to capture CO2 from dry, flue gas containing 15% CO2 in N2 is reported. Full optimization of the analyzed VSA cycles using genetic algorithm has been performed to obtain purity‐recovery and energy‐productivity Pareto fronts. These cycles are assessed for their ability to produce high‐purity CO2 at high recovery. Configurations satisfying 90% purity‐recovery constraints are ranked according to their energy‐productivity Pareto fronts. It is shown that a 4‐step VSA cycle with light product pressurization gives the minimum energy penalty of 131 kWh/tonne CO2 captured at a productivity of 0.57 mol CO2/m3 adsorbent/s. The minimum energy consumption required to achieve 95 and 97% purities, both at 90% recoveries, are 154 and 186 kWh/tonne CO2 captured, respectively. For the proposed cycle, it is shown that significant increase in productivity can be achieved with a marginal increase in energy consumption. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4735–4748, 2013  相似文献   

15.
CO2 capture technology combined with bulk separation and purification processes has become an attractive alternative to reduce capture costs. Furthermore, the required purity in the application for CO2 conversion and utilization is more stringent than that required from a captured CO2 mixture for geological storage. In this study, an adsorptive cyclic purification process was developed to upgrade a CO2/N2 mixture captured from greenhouse gas emission plants as a feasibility study for a second capture unit or captured CO2 purifier. To purify 90% CO2 with balance N2 as a captured gas mixture, two‐bed pressure swing adsorption and pressure vacuum swing adsorption (PVSA) processes using activated carbon were experimentally and theoretically studied at adsorption pressures of 250–650 kPa and a fixed vacuum pressure of 50 kPa. CO2 with higher than 95% purity was produced with more than 89% recovery. However, a four‐bed PVSA process could successfully produce CO2 with greater than 98% purity and 90% recovery. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1051–1063, 2017  相似文献   

16.
The main purpose of the study was to develop a model using ASPEN and Excel simulation method to establish optimum CO2 separation process utilizing hollow fiber membrane modules to treat exhaust gas from LNG combustion. During the simulation, optimum conditions of each CO2 separation scenario were determined while operating parameters of CO2 separation process were varied. The characteristics of hollow fibers membrane were assigned as 60 GPU of permeability and 25 of selectivity for the simulation. The simulation results illustrated that 4 stage connection of membrane module is required in order to achieve over 99% of CO2 purity and 90% of recovery rate. The resulted optimum design and operation parameters throughout the simulation were also correlated with the experimental data from the actual CO2 separation facility which has a capacity of 1,000 Nm3/day located in the Korea Research Institute of Chemical Technology. Throughout the simulation, the operating parameters of minimum energy consumption were evaluated. Economic analysis of pilot scale of CO2 separation plant was done with the comparison of energy cost of CO2 recovery and equipment cost of the plant based on the simulation model. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

17.
The world will need greatly increased energy supply in the future for sustained economic growth, but the related CO2 emissions and the resulting climate changes are becoming major concerns. CO2 is one of the most important greenhouse gases that is said to be responsible for approximately 60% of the global warming. Along with improvement of energy efficiency and increased use of renewable energy sources, carbon capture and sequestration (CCS) is expected to play a major role in curbing the greenhouse gas emissions on a global scale. This article reviews the various options and technologies for CO2 capture, specifically for stationary power generation sources. Many options exist for carbon dioxide capture from such sources, which vary with power plant types, and include post-combustion capture, pre-combustion capture, oxy fuel combustion capture, and chemical looping combustion capture. Various carbon dioxide separation technologies can be utilized with these options, such as chemical absorption, physical absorption, adsorption, and membrane separation. Most of these capture technologies are still at early stages of development. Recent progress and remaining challenges for the various CO2 capture options and technologies are reviewed in terms of capacity, selectivity, stability, energy requirements, etc. Hybrid and modified systems hold huge future potentials, but significant progress is required in materials synthesis and stability, and implementations of these systems on demonstration plants are needed. Improvements and progress made through applications of process systems engineering concepts and tools are highlighted and current gaps in the knowledge are also mentioned. Finally, some recommendations are made for future research directions.  相似文献   

18.
In the work presented in this paper, an alternative process concept that can be applied as retrofitting option in coal-fired power plants for CO2 capture is examined. The proposed concept is based on the combination of two fundamental CO2 capture technologies, the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing. A 330 MWel Greek lignite-fired power plant and a typical 600 MWel hard coal plant have been examined for the process simulations. In a retrofit application of the ECO-Scrub technology, the existing power plant modifications are dominated by techno-economic restrictions regarding the boiler and the steam turbine islands. Heat integration from processes (air separation, CO2 compression and purification and the flue gas treatment) can result in reduced energy and efficiency penalties. In the context of this work, heat integration options are illustrated and main results from thermodynamic simulations dealing with the most important features of the power plant with CO2 capture are presented for both reference and retrofit case, providing a comparative view on the power plant net efficiency and energy consumptions for CO2 capture. The operational characteristics as well as the main figures and diagrams of the plant’s heat balances are included.  相似文献   

19.
Application of new solvents will substantially contribute to the reduction of the energy demand for the post combustion capture of CO2 from power plant flue gases. The present work describes tests of such new solvents in a gas-fired pilot plant, which comprises the complete absorption/desorption process (column diameters 0.125 m, absorber/desorber packing height 4.25/2.55 m, packing type: Sulzer BX 500, flue gas flow 30–100 kg/h, CO2 partial pressure 35–135 mbar). Two new solvents CESAR1 (0.28 g/g 2-amino-2-methyl-1-propanol+0.17 g/g piperazine+0.55 g/g H2O) and CESAR2 (0.32 g/g 1, 2-ethanediamine+0.68 g/g H2O), which were developed in an EU-project, were systematically studied and compared to MEA (0.3 g/g monoethanolamine+0.7 g/g H2O). The two new solvents and MEA were studied in the same way in the pilot plant and detailed results are reported for all solvents. In the present study the structured packing Sulzer BX 500 is used. The measurements are carried out at a constant CO2 removal rate of 90% by an adjustment of the regeneration energy in the desorber for systematically varied solvent flow rates. An optimal solvent flow rate leading to a minimum energy requirement is found from these studies. Direct comparisons of such results can be misleading if there are differences in the kinetics of the different solvent systems. The influence of kinetic effects is experimentally studied by varying the flue gas flow rate at a constant ratio of solvent mass flow to flue gas mass flow and constant CO2 removal rate. Results from these studies indicate similar kinetics for CESAR1, CESAR2 and MEA. The direct comparison of the pilot plant results for these solvents is therefore justified. Both CESAR1 and CESAR2 show improvements compared to MEA. The most promising is CESAR1 with a reduction of about 20% in the regeneration energy and 45% in the solvent flow rate.  相似文献   

20.
马双忱  孙云雪  崔基伟  赵毅 《化工学报》2011,62(5):1408-1413
CO2作为主要的温室气体,其减排问题引起全球范围的广泛关注,开展适合我国国情的燃煤电厂CO2减排技术研究至关重要。氨法脱除电厂烟气中CO2具有低成本、高脱除效率等特点,但该技术面临的一个很大问题是氨的逃逸。针对氨法脱碳过程中氨逃逸问题展开实验研究,采用鼓泡吸收反应器研究了聚乙二醇二甲醚(NHD)对氨逃逸的抑制效果以及氨水和NHD浓度对氨逃逸的影响,并分析了NHD抑制氨逃逸的机理。结果表明,NHD对氨逃逸具有一定的抑制作用,同时在一定程度上提高了脱碳效率。添加5%NHD后,氨逃逸量降低24.86%,CO2的脱除效率增加10%左右。研究结果对进一步开展氨法捕集CO2研究有较大的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号