首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(8):1167-1176
The present research is to investigate the possibility of macrofungus Lycoperdon perlatum biomass, which is an easily available, renewable plant, low-cost, as a new biomass for the removal of mercury (Hg(II)) ions from aqueous solutions. The effects of various parameters like pH of solution, biomass concentration, contact time, and temperature were studied by the using the batch method. The Langmuir model adequately described the equilibrium data. The biosorption capacity of the biomass was found to be 107.4 mg · g?1 at pH 6. The mean free energy value (10.9 kJ · mol?1) obtained from the D–R model indicated that the biosorption of Hg(II) onto fungal biomass was taken place via chemical ion-exchange. Thermodynamic parameters showed that the biosorption of Hg(II) onto L. perlatum biomass was feasible, spontaneous, and exothermic in nature. The kinetic results showed that the biosorption of Hg(II) onto fungal biomass followed second-order kinetics. This work also shows that L. perlatum biomass can be an alternative to the expensive materials like ion exchange resins and activated carbon for the treatment of water and wastewater containing mercury ions due to its ability of selectivity and higher biosorption capacity and also being low cost material.  相似文献   

2.
《分离科学与技术》2012,47(6):960-967
The biosorption of Au(III) and Cu(II) ions in both single and binary systems by Magnetospirillum gryphiswaldense (MSR-1) was investigated. For comparison with the selective reinforced competitive biosorption process in a binary system, the experimental research first explored the biosorption of Au(III) and Cu(II) in a single system under various conditions. The biomass exhibited the highest single Au(III) and Cu(II) ion adsorption yields at room temperature (25°C), pH values of 2.5 and 5.0, respectively, and a biomass concentration of 10 g · L?1 (3.83 g · L?1, dry basis). The experimental data from the single component system for the two metallic ions fitted well to a Langmuir isotherm and a pseudo second-order kinetic models. In the Au(III)-Cu(II) binary system, the coexistence of Cu(II) cations promoted the adsorption of Au(III) within a certain range of ratios. A new sigmoidal Cu(II) biosorption isotherm was determined specifically to reveal the Cu(II) adsorption behavior in this case.  相似文献   

3.
Biomass of the alga Jania adhaerens was used for biosorption of copper ions from aqueous solutions. The effects of pH, copper concentration, biomass amount, and contact time on biosorption were investigated. For chemical modification of functional groups, FTIR and ICP analyses were performed to study the biosorption mechanism. Furthermore, the SEM images of pristine and copper-loaded biomass were also provided. The pseudo second order model described kinetics data appropriately. The adsorption isotherm was best fitted to the Langmuir model with the maximum adsorption capacity of 67 mg g?1. Sulfonate, carboxyl, and amine functional groups affected the biosorption. Ion exchange was a mechanism of biosorption.  相似文献   

4.
Quite a number of reports are available on metal binding capacity of different groups of microorganisms. However, reports on the equilibrium studies on biosorption by marine fungi are quite inadequate. The present study was carried out in a batch system using dead biomass of marine Aspergillus niger for the sorption of Cr(VI). The removal rate of Cr(VI) was increased with a decrease in pH and an increase in Cr(VI) and biomass concentration. A. niger exhibited the highest Cr(VI) uptake of 117.33 mg g?1 of biomass at pH 1.0 in the presence of 400 mg l?1 Cr at 50 °C. Kinetics studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have also been carried out. The experimental data were analyzed using five, two-parameter isotherms (Langmuir, Freundlich, Dubinin–Radushkevich, Temkin and Halsey). It was observed that Langmuir model exhibited the best fit to experimental data. Thermodynamic parameters of the biosorption (ΔG°, ΔH° and ΔS°) were also determined.  相似文献   

5.
《分离科学与技术》2012,47(1):192-211
Abstract

In this study, the biosorption of Basic Blue 9 (BB9) dye from aqueous solutions onto a biomass of Euphorbia rigida was examined by means of the initial biosorbate concentration, biosorbent amount, particle size, and pH. Biosorption of BB9 onto E. rigida increases with both the initial biosorbate concentration and biosorbent amount, whereas decreases with the increasing particle size. The experimental data indicated that the biosorption isotherms are well‐described by the Langmuir equilibrium isotherm equation at 20, 30, and 40°C. Maximum biosorption capacity was 3.28×10?4 mol g?1 at 40°C. The biosorption kinetics of BB9 obeys the pseudo‐second‐order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of biosorption. These experimental results have indicated that E. rigida has the potential to act as a biosorbent for the removal of Basic Blue 9 from aqueous solutions.  相似文献   

6.
The biosorption and detoxification performance of Lysinibacillus fusiformis KMNTT-10 biomass for lead(II) was investigated. The optimum conditions for Pb(II) adsorption were found to be pH 6.0 and contact time 90 min at 27 ± 2°C. Equilibrium data of Pb(II) adsorption fitted well with the Langmuir isotherm model and followed pseudo-second-order model. SEM-EDX analysis revealed a blister like protrusions formed on the biomass surface after Pb(II) biosorption. FTIR spectra indicated that anionic functional groups on the biomass surface took part in the adsorption process. Further, X-ray diffraction analysis showed that the adsorbed Pb(II) was transformed (detoxified) into less soluble PbS (galena).  相似文献   

7.
The removal of Ni(II) from aqueous solutions using biomass prepared from Ceiba pentandra hulls powder modified with citric acid treatment (CAMCPH) has been studied by batch method. The biosorbent was characterised before and after citric acid modification using SEM, FT‐IR and XRD. Experimental parameters that influence the biosorption of Ni(II), such as pH, biosorbent dose, contact time and initial concentration of metal ion have been investigated. The adsorption of Ni(II) increased with increase in contact time and reached equilibrium within 50 min. The maximum removal of Ni(II) was observed at pH 5.0. The kinetic data were analysed using three adsorption kinetic models: the pseudo‐first, second‐order kinetics and intra‐particle diffusion. The results showed that the pseudo‐second‐order model fits the experimental data very well. The equilibrium data were analysed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. Langmuir model provided the best correlation for the adsorption of Ni(II) by CAMCPH and the monolayer biosorption capacity for Ni(II) removal was 34.34 mg/g. Desorption experiments were carried out using HCl solution and the recovery of the metal ion from CAMCPH was found 98%. Desorption experiments showed the feasibility of regeneration of the biosorbent for further use after treating with dilute HCl. © 2011 Canadian Society for Chemical Engineering  相似文献   

8.
《分离科学与技术》2012,47(15):3149-3165
Abstract

Biosorption of nickel (II) and copper (II) ions from aqueous solution by dead sphaeroplea algae in natural and acid treated forms were studied as a function of concentration, pH, and adsorbent dose. The optimum pH for nickel (II) and copper (II) biosorption was found to be 6.0 and 4.0 respectively. The metal ion uptake increased with initial metal ion concentration studied up to 500 mg/L. Both the Freundlich and Langmuir adsorption models could fit the equilibrium data. The adsorption reasonably fitted the Lagergren kinetic model. Further the biomass was characterized by FTIR spectra. Surface area values are measured to be 0.9 and 2.1 m2/g for natural and acid treated forms respectively. The maximum adsorption capacity was found to be 3.40, 4.15 mmol/g for nickel (II) and 2.21, 3.41 mmol/g for copper (II) in natural and acid treated forms respectively.  相似文献   

9.
The biosorption of Brill Red 5B from an aqueous solution, using Cicca acida plant's leaves was investigated in a batch system with the influence of pH (1–6), temperature (25–35°C) and initial dye concentration (10–100 mg/L). Maximum biosorption was observed at initial pH of 2.0, temperature of 30°C and at the initial dye concentration of 100 mg/L. Batch biosorption kinetic was studied using the pseudo first and pseudo‐second‐order rate equations. From the result, it was observed that pseudo‐second‐order rate expression fitted the experimental data well when compared to pseudo first order kinetic model. The intra‐particle diffusion coefficient (Ki) and effective diffusion coefficient (Di) values obtained for the sorption of Brill Red 5B using C. acida plant's leaves were found to be increased with increase in initial dye concentration.  相似文献   

10.
BACKGROUND: The removal of toxic metals from wastewaters by biosorption, based on the metal‐binding capacities of various biological materials, has attracted much interest. However, the success of this approach depends on economic feasibility, which can be obtained by optimisation of the environmental conditions. In this study, Ni(II) biosorption experiments were carried out using a preformed biomass of Rhizopus arrhizus. A pure culture of previously isolated R. arrhizus Env 3 was used for maximum biosorption of nickel metal from nickel‐electroplating industrial effluent. RESULTS: Various environmental factors such as nickel concentration, pH, temperature, mycelial pellet weight, pretreatment of fungal biomass, dead and living fungal biomass and time course of biosorption by R. arrhizus Env 3 were optimised for maximum removal of nickel from the effluent. The maximum nickel removal rate of 618.5 mg g?1 was observed with living biomass at pH 8, temperature 35 °C, nickel concentration 500 mg L?1, pellet size 3 g wet weight and shaker velocity 150 rpm. Maximum nickel biosorption was obtained after 72 h. CONCLUSION: Statistical analysis of different factors such as temperature, pH, mycelial pellet size, concentration of nickel in effluent and residual nickel level showed that all these factors had significant effects on the biosorption of nickel metal by R. arrhizus Env 3 from nickel‐electroplating industrial effluent. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
《分离科学与技术》2012,47(6):997-1004
Equilibrium, thermodynamic, and kinetic studies on the biosorption of Cu(II) using biomass, Trichoderma viride were carried out. The biosorbent was characterized by Fourier transform infrared spectroscopy and Scanning Electron Microscopy. The Langmuir and Freundlich isotherm models were applied to describe the biosorption process. The influence of pH, the biomass dosage, the contact time, the initial metal ion concentration, and the temperature of the solution on the biosorption was studied. The maximum Cu(II) biosorption was attained at pH 5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The maximum biosorption capacity of T. viride biomass was found to be 19.6 mg/g for Cu(II). The kinetic studies indicated that the biosorption of Cu(II) followed the pseudo-second-order model. The calculated thermodynamic parameters, Gibbs-free energy (ΔGo), enthalpy (ΔHo), and entropy (ΔSo) showed that the biosorption of Cu(II) onto T. viride biomass was spontaneous and endothermic. It can be concluded that the T. viride biomass has the potential as an effective and low-cost biosorbent for Cu(II) removal from aqueous solutions.  相似文献   

12.
The present research provides information on the Cr(VI) removal potential of NaCl-modified Ceratophyllum demersum, an aquatic plant biomass. The effects of various parameters including pH, biomass dosage, contact time, and initial concentration on Cr(VI) biosorption were investigated. The best conditions for Cr(VI) biosorption in the present study were: pH of 2, biosorbent dose of 8 g/L, and contact time of 60 min. Under these conditions, maximum adsorption capacity of modified C. demersum for Cr(VI) was 10.20 mg/g. The experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with a high coefficient of determination (R2 > 0.99). The biosorption process followed pseudo-second-order kinetics. Further, the biosorbent was characterized by Fourier transform-infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The results showed that biosorption of Cr(VI) on NaCl-modified C. demersum occurred through chemical sorption.  相似文献   

13.
《分离科学与技术》2012,47(16):4000-4022
Abstract

The biosorption of Cu(II) and Zn(II) using dried untreated and pretreated Citrus reticulata waste biomass were evaluated. The Cu(II) and Zn(II) sorption were found to be dependent on the solution pH, the biosorbent dose, the biosorbent particle size, the shaking speed, the temperature, the initial metal ions (800 mg/L), and the contact time. Twenty-eight physical and chemical pretreatments of Citrus reticulata waste biomass were evaluated for the sorption of Cu(II) and Zn(II) from aqueous solutions. The results indicated that biomass pretreated with sulphuric acid and EDTA had maximum Cu(II) and Zn(II) uptake capacity of 87.14 mg/g and 86.4 mg/g respectively. Moreover, the Langmuir isotherm model fitted well than the Freundlich model with R 2 > 0.95 for both metal ions. The sorption of Cu(II) and Zn(II) occurred rapidly in the first 120 min and the equilibrium was reached in 240 min. FTIR and SEM studies were also carried out to investigate functional groups present in the biomass and the surface morphological changes of biomass.  相似文献   

14.
BACKGROUND: This research provides new insights into the biosorption of zinc on a waste product from the orange juice industry. Optimal operating conditions maximizing percentage zinc removal were determined in batch and fixed‐bed systems. Biomass was characterized by FTIR spectroscopy and by major cation content in order to better understand the biosorpion mechanism. Zn‐loaded orange waste was proposed to be used as an alternative fuel in cement kilns. RESULTS: Sorption capacity was strongly affected by biosorbent dose and solution pH, and was not strongly sensitive to particle size under the experimental conditions studied. Equilibrium data were successfully described by a Langmuir model and sorption kinetic data were adequately modelled with the pseudo‐second‐order and Elovich rate equation. The biomass was found to possess high sorption capacity (qmax = 0.664 mmol g?1) and biosorption equilibrium was established in less than 3 h. Experimental breakthrough curves were adequately fitted to the Thomas model and the dose–response model, obtaining sorption capacities in continuous assays higher than those found in batch mode. Characterization of the biomass suggested the possible contribution of carboxyl and hydroxyl groups of biomass in Zn2+ biosorption and it also highlighted the important role of light metal ions in a possible ion‐exchange mechanism. CONCLUSIONS: Orange waste could be used as an effective and low‐cost alternative biosorbent material for zinc removal from aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
BACKGROUND: The removal of methylene blue from aqueous solution was studied using softstem bulrush (Scirpus tabernaemontani Gmel.) as the biosorbent. The effects of various parameters including contact time, biosorbent dosage, ionic strength and solution pH on the biosorption were investigated. RESULTS: The sorption capacity increased with an increase in biosorbent dosage and a decrease in ionic strength. The equilibrium time was found to be 240 min for full equilibration. Pseudo‐first‐order, pseudo‐second‐order, Bangham equation and intraparticle diffusion models were applied to fit the kinetic data, and the results showed that the sorption process followed the pseudo‐second‐order model. Equilibrium data conformed to Langmuir and Redlich–Peterson isotherm models, with a maximum monolayer biosorption capacity of 53.8 mg g?1 for the Langmuir isotherm at 18 °C. The value of ΔG was estimated to be ? 29.24 kJ mol?1, indicating the spontaneous nature of the biosorption. The biosorption process was strongly pH‐dependent and favourable at alkaline pH. CONCLUSION: Softstem bulrush, which is readily available and inexpensive, could be employed as a promising biosorbent for the removal of dye. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
《分离科学与技术》2012,47(4):747-756
Abstract

Rice bran, an agricultural by‐product, was used for the removal of zinc ions from aqueous solution. The work considered the determination of zinc‐biomass equilibrium data in batch system. These studies were carried out in order to determine some operational parameters of zinc sorption such as the time required for the Zinc‐biosorbent equilibrium, the effects of biomass particle size, pH, and temperature. The results showed that pH has an importance effect on zinc biosorption capacity. The biosorbent size also affects the zinc biosorption capacity. The sorption process follows pseudo‐second‐order kinetics. The intraparticle diffusion may be the rate‐controlling step involved in the adsorption zinc ions onto the rice bran up to 30 min. The equilibrium data could be best fitted by the Langmuir sorption isotherm equation over the entire concentration range (40–160 mg/dm3). Thermodynamic parameters, such as ΔG°, ΔH°, ΔS°, have been calculated. The thermodynamics of zinc ion/rice bran system indicate spontaneous and endothermic nature of the process.  相似文献   

17.
《分离科学与技术》2012,47(4):463-471
The biosorption of As(III) and As(V) from aqueous solution on lichen (Xanthoria parietina) biomass were investigated using different experimental parameters such as solution pH, biomass concentration, contact time, and temperature. The equilibrium data were evaluated by Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The biosorption capacity of X. parietina for As(III) and As(V) was found to be 63.8 mg/g and 60.3 mg/g. The mean sorption energy values calculated from D–R model indicated that the biosorption of As(III) and As(V) onto X. parietina biomass took place by chemical ion-exchange. The thermodynamic parameters showed that the biosorption of As(III) and As(V) ions onto X. parietina biomass was feasible, spontaneous, and exothermic in nature. Kinetic examination of the sorption data revealed that the biosorption processes of both As(III) and As(V) followed well the pseudo-second-order kinetics. The arsenic ions were desorbed from X. parietina using both 1 M HCl and 1 M HNO3. The recovery yield of arsenic ions was found to be 80-90% and the biosorbent had good reusability after consecutive seven sorption-desorption cycles.  相似文献   

18.
Procion Blue H‐B (PBHB) was used as a model reactive dye for biosorption studies onto inactive/dead mycelial biomass of Panus fulvus. Process parameters like pH, contact time and temperature were optimized. pH 2, 150 min of contact time and 35 °C were found to be more favorable for maximum biosorption. Various two‐ and three‐parameter isotherms were employed to understand the biosorption process. Among the various two‐parameter isothermal models applied, the Langmuir isotherm showed the best fit and among the three‐parameter isothermal models, the Khan, Redlich–Peterson, Sips and Toth isotherm models showed similar fits and only the Koble–Corrigan model showed a poor fit. In kinetic studies, pseudo‐first‐order model fitted better than pseudo‐second‐order model. Maximum desorption was observed in alkaline pH, which reveals the possibility of a chemisorption mechanism involved in the removal of PBHB. Among the various desorption media assessed, 70% (v/v) acetone showed complete desorption of the sorbate from the sorbent. Scanning electron microscopy images revealed the non‐fibrous nature of the adsorbent. FT‐IR studies showed the existence of amine groups in the sorbent which are the major adsorbent sites for reactive dyes. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
《分离科学与技术》2012,47(5):742-752
The efficacy of activated carbon prepared from Palm Kernel Shell (PKSAC) from agriculture biomass and coated with magnetic nanoparticle (Fe3O4) in the removal of Rhodamine B dye was investigated. Adsorption experiments were carried out at various initial pH, adsorbent dosage, initial dye concentration, particle size, and temperature. Kinetic analyses were conducted using pseudo first order, pseudo second order and intra particle diffusion models. However, the regression results showed that the adsorption kinetics was represented more accurately by the pseudo second order model. The pseudo second order kinetic constant obtained was 1.7 × 10?4 min?1 at 323 K when 200 mg L?1 dye concentration was used. The equilibrium data were well described by both Langmuir and Freundlich isotherm models. The Langmuir adsorption capacity was 625 mgg?1. The rate of adsorption improved with increasing temperature and the process was endothermic with ΔH value assessed at 80 kJmol?1. Results obtained reveal that activated carbon prepared from Palm Kernel Shell coated with magnetic nanoparticle from agriculture biomass can be an attractive option for dye removal from industrial effluent.  相似文献   

20.
L ‐Cysteine increased gold‐cyanide biosorption by protonated Bacillus subtilis, Penicillium chrysogenum and Sargassum fluitans biomass. At pH 2, the maximum Au uptakes were 20.5 µmol g−1, 14.2 µmol g−1 and 4.7 µmol g−1 of Au, respectively, approximately 148–250% of the biosorption performance in the absence of cysteine. Au biosorption mainly involved anionic AuCN2 species adsorbed by ionizable functional groups on cysteine‐loaded biomass carrying a positive charge when protonated [(biomass–cysteine–H+)–(AuCN2)]. Deposited gold could be eluted from Au‐loaded biomass at pH 3–5. The elution efficiencies were higher than 92% at pH 5.0 with the Solid‐to‐Liquid ratio, S/L, = 4. Increasing solution ionic strength (NaNO)3 decreased Au uptake. FTIR analyses indicated that the main functional groups involved in gold biosorption in the presence of L ‐cysteine are probably N‐, S‐ and O‐containing groups. The present results confirm that certain waste microbial biomaterials are capable of effectively removing and concentrating gold from solutions containing residual cyanide if applied under appropriate conditions. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号