首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
NaA zeolite membranes were synthesised in the secondary growth hydrothermal method based on the seeding of the inner surface of a ceramic α-alumina tube. The impacts of crystallisation time and zeolite precursor concentration (in H2O) were investigated. The structure and stability of the prepared NaA zeolite membranes were also investigated with operating temperatures, times and pressures. The results indicate that the optimal synthesis gel molar composition was 3Na2O: 2SiO2: Al2O3: 200H2O. This led to cubic-shaped NaA zeolite which showed good stability. The optimal NaA zeolite membrane had H2O and CH3OH fluxes of 2.77 and 0.19 kg/m2h, with H2O/H2 and CH3OH/H2 separation factors of ∞ and 0.09 at a temperature of 30 °C. The NaA zeolite membrane had high thermal stability, but poor separation performance at high temperature (240 °C). The results suggested that the H2 permeation flux is significantly influenced by preferential adsorption of vapour in the NaA zeolite membrane.  相似文献   

2.
《分离科学与技术》2012,47(6):797-802
Using of clear gel solution on synthesis of zeolite membrane can potentially have many benefits. In this research, zeolite T membrane on home-made α-Alumina disc-shaped MF support was successfully synthesized in 120°C for 24 h via secondary growth hydrothermal method using high alkalinity clear gel solution in molar ratio formulation (SiO2:Al2O3:Na2O:K2O:H2O = 55:1:122.7:42.3:2000). The synthesized membrane showed elevated selectivity in dehydration of ethanol/water and 2-propanol/water solutions (between 1000 to more than 10000) and high-water permeation fluxes (between 1.2 to 2.4 kg/m2h at 40°C for 10 wt.% water content). The synthesized MF alumina supports, zeolite T membranes, and crystals used for seeding were characterized by XRD and SEM analyses. These analyses indicated 10 μm dense and defect-free well-intergrowth zeolite T as active layers were formed on the porous media support.  相似文献   

3.
支撑体材料对NaA型沸石分子筛膜形成的影响   总被引:4,自引:0,他引:4  
采用水热合成法制备NaA型沸石分子筛膜,实验比较了α-AI2O3、ZrO2及TiO2三种支撑体对NaA型沸石分子筛膜形成的影响。XRD测定所合成的沸石分子筛膜是NaA型。SEM和渗透实验结果表明,沸石分子筛膜的性能与支撑体有关,TiO2优于ZrO2和α-AI2O3。TiO2支撑体上合成沸石分子筛膜的H2、N2渗透系数大小基本与膜两侧平均压力无关,理想分离系数约为8,高于Kundsen扩散分离因子3.74,表现有一定的分子筛分效应。  相似文献   

4.
NaA zeolite membrane coating was successfully synthesized on a porous alumina substrate by hydrothermal treatment. The effects of synthesis parameters like, seeding type (ex situ, in situ), time, temperature, sol concentration, coating stages, application of intermediate layer, etc. on membrane characteristics were investigated. A continuous membrane was formed on a seeded substrate. Surface seeding (ex situ crystallization) not only accelerates the zeolite crystallization process on the support surface, but can also enhance the formation of homogeneous NaA zeolite layer. The NaA zeolite membrane with a synthesis time of 4 h shows the best microstructure and the quality of membrane was improved by employing the multi-stage coating. But the main problem associated with membrane synthesis was crack formation, and it can be reduced by applying intermediate layer, between support surface and seed layer. A thin cellulose layer was applied to the support surface before applying seed crystals. The performance of the membranes was evaluated by gas permeation measurement. The permeance of O2, N2 decreased as kinetic diameter of gases increased. The permselectivity of O2/N2 was 1.9–2.34. This value showed the molecular sieving effect of NaA zeolite membrane.  相似文献   

5.
Inorganic membranes and particularly zeolite membranes are usually used for the dehydration of organic solvents by pervaporation (PV). This work reports an experimental study on the PV dehydration of ethylene glycol (EG)/water mixtures using commercial nanoporous NaA zeolite membranes. The concentration range investigated (CEG > 70 wt %) was selected according to existing industrial requirements. The recirculation flow rate was kept at a value of 1.5 L/min. The fluxes and separation factors were monitored as the dehydration proceeded. In addition, the activation energy of permeation (Ea) was calculated. The effect of temperature was investigated in the range 50–70 °C. The results obtained demonstrated the successful performance of the membrane for the dehydration of EG/water mixtures. It was observed that at 70 °C and with 70 wt % initial EG concentration, larger fluxes and separation factors could be obtained, i.e., 0.94 kg m–2h–1 and 1177, respectively. The Pervaporation Separation Index (PSI) of the membrane was found to be high compared to that of polymeric membranes.  相似文献   

6.
High-quality zeolite NaA membranes were synthesized on modified α-alumina supports. The surface of macroporous α-alumina supports was modified by deposition of an ultrafiltration layer of γ-alumina. The zeolitic top layers were synthesized via the secondary growth method. The required seeds for the membrane synthesis were prepared via the hydrothermal synthesis using organic template of tetra methyl ammonium hydroxide (TMAOH) to obtain nano-sized seeds. The synthesized seeds and membranes were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The separation performance of membranes was evaluated in pervaporation (PV) dehydration of ethylene glycol (EG). Effect of operational parameters including feed composition, feed flow rate, and feed temperature on separation performance of the synthesized NaA zeolite membranes were investigated. The membranes showed separation factor of 10,996 and high total flux of 7.16 kg m−2 h−1 for feed temperature of 80 °C, feed flow rate of 1.5 L/min, and feed concentration of 90 wt.% EG.  相似文献   

7.
采用微波水热合成法在聚醚酰亚胺(PEI)-NaA分子筛/α-Al2O3复合载体表面合成了具有高选择性的致密NaA型分子筛膜,重点考察了微波辐射时间对成膜的影响。采用X射线衍射图谱(XRD)和扫描电子显微镜(SEM)对NaA型分子筛膜进行了表征。XRD结果表明,复合载体表面生成的膜中只有NaA分子筛的晶相;SEM结果表明,复合载体基膜表面覆盖了一层致密连续的NaA型分子筛膜。合成的NaA型分子筛膜在不同质量分数乙醇中的渗透汽化性能结果表明,渗透通量随乙醇质量分数增大而减小,分离因子则反之,当乙醇质量分数为95%时,渗透通量仅0.05 kg/(m2.h),而分离因子高达13 000。  相似文献   

8.
NaA zeolite membrane coating was successfully synthesized on an alumina porous disc by hydrothermal treatment. The effects of synthesis parameters, such as seeding condition (in situ, ex situ), synthesis time, synthesis stages, application of intermediate layer, etc., on membrane characteristics were investigated. Surface seeding accelerates the zeolite crystallization process on the support surface, and also enhances the formation of homogeneous NaA zeolite layer. But the main problem associated with membrane coating synthesis is crack formation. Formation of crack was reduced by applying intermediate layer, between the support surface and seed layer. A thin Boehmite layer was applied to the support surface before applying seed crystals to enhance the adherence between zeolite seed layer and boehmite layer by hydrogen bonding and also to increase the mechanical strength of the membrane layer. The quality of the membrane layer can be improved by employing the multi-stage coating methods. The permeance of O2, N2 decreased as kinetic diameter of gases increased, which shows the molecular sieving effect of the NaA membrane. The permselectivity of O2/N2 was 1.9–2.0. This value of permselectivity ratio is higher than Knudsen diffusion ratio 0.94; it was also confirmed the molecular sieving properties of synthesized NaA zeolite membrane.  相似文献   

9.
Industrial zeolitic membranes which offer a remarkable selectivity compared to polymeric membranes, suffer of the lower flux due of their larger thickness (e.g., 10–30 μm). This problem can be addressed by controlled synthesis of nanolayers, resulting in thinner membrane layers (e.g., 0.5–5 μm). An aluminosilicate gel with a molar composition of 20SiO2:Al2O3:10K2O:400H2O was used to prepare several membranes of zeolite L by means of a controlled hydrothermal synthesis on the surface of a porous alumina disc seeded with nanozeolite LTL crystals. Nanocrystallites of LTL zeolite with an average particle size of 80–100 nm were successfully synthesized and characterized. Using these nanoparticles as seeds, a zeolite L layer with an average thickness of 2 μm was synthesized on the alumina support at 150 °C.  相似文献   

10.
In this work, zeolite NaA was successfully synthesized by a hydrothermal method using kaolin as a combined source for silica and alumina. Zeolite NaA with high static water adsorption was synthesized from the low-cost raw material, kaolin, and the reaction parameters were optimized. Metakaolin was obtained by calcining kaolin at temperatures ranged from 953 K to 1173 K. The synthesis mixture was pre-crystallized at 343 K and crystallized at 373 K successively. Zeolite NaA was obtained, which was confirmed by SEM, XRD and the water adsorption analysis. The optimized metakaolinization temperature was found at 973 K. The influence of Na2O/SiO2 molar ratio, pre-crystallization time and seed on the crystallization of NaA zeolite was investigated. A thorough mixing of metakaolin and NaOH solution was favourable for the nucleation/crystallization rate. The obtained NaA zeolite under the optimized conditions shows excellent crystallinity and static water adsorption of 28.0 wt-%, which was higher than 25.9 wt-% of the commercial NaA zeolite. Kaolin was suggested to be a feasible and economical raw material for the practical industrial applications for NaA zeolite.  相似文献   

11.
NaA zeolite membranes were prepared by secondary growth method on the outer surface ofα-Al2O3 hollow fiber supports. Vacuum seeding method was used for planting zeolite seeds on the support surfaces. Hydrother-mal crystallization was then carried out in a synthesis solution with molar ratio of Al2O3:SiO2:Na2O:H2O=1:2:2:120 at 100 °C for 4 h. Effects of seeding conditions on preparation of hollow fiber NaA zeolite membranes were extensively investigated. Moreover, hollow fiber membrane modules with packing membrane areas of ca. 0.1 and 0.2 m2 were fabricated to separate ethanol/water mixture. It is found that the thickness of seed layer is obviously affected by seed suspension concentration, coating time and vacuum degree. Close-packing seed layer is required to obtain high-quality membranes. The optimized seeding conditions (seed suspension mass concentration of 0.5%–0.7%, coating time of 5 s and vacuum degree of 10 kPa) lead to dense NaA zeolite layer with a thickness of 6–8μm. Typically, an as-synthesized hollow fiber NaA zeolite membrane exhibits good pervaporation performance with a permeation flux of 7.02 kg·m?2·h?1 and separation factor N 10000 for sepa-ration of 90%(by mass) ethanol/water mixture at 75 °C. High reproducibility has been achieved for batch-scale production of hollow fiber NaA zeolite membranes by the hydrothermal synthesis approach.  相似文献   

12.
A seeding-free synthesis method is developed for preparation of oriented zeolite LTA membranes by using 1,4-phenylene diisocyanate (PDI) as a molecular linker. Before hydrothermal synthesis, –NCO groups are introduced with the functionalization of Al2O3 supports by PDI. A thin, well intergrown zeolite LTA membrane with a thickness of about 4.0 µm can be formed on the PDI-modified Al2O3 supports. The zeolite LTA membrane displays high pervaporation performances for dehydration of alcohols. At 90°C, the separation factor of the zeolite LTA membrane is 4480 for dehydration of 95 wt% ethanol/water mixtures, with a high water flux of 3.4 kg·m?2·h?1.  相似文献   

13.
Nanoporous LTA‐type zeolite membranes were synthesized on α‐Al2O3 disk as substrate using secondary growth method. A gel formula of 1 Al2O3: 2 SiO2: 3.4 Na2O: W H2O in molar basis was chosen while its water content (W) was varied. Four levels of water contents of 140, 155, 175, and 200 were selected for membrane synthesis. The results showed that the best membrane was synthesized with water content of 155. The most efficient zeolite membrane showed a permeation flux of 0.5 kg/m2/h and a separation factor of 3800 in dehydration of a 5/95 (wt%) water/isopropanol mixture at 298 K.  相似文献   

14.
Zeolite NaA membranes were prepared in a clear synthesis solution without the aid of nanoseeds. To improve the properties of the membranes formed in a clear solution, alumina hollow fibers were fabricated by adding silica powder to the conventional spinning slurry, resulting in hollow fibers with a mullite phase. Prior to the membrane synthesis, the hollow fibers were pretreated by dipping in an aged synthesis solution diluted with isopropanol. Dense zeolite NaA membranes on mullite‐containing alumina hollow fibers were successfully obtained at 100°C for 2 h without the aid of nanoseeds. The membranes have a good pervaporation performance with a high flux of 10.8 kg m?2 h?1 and a separation factor of over 10,000. The abundant mullite‐phase hydroxyl groups on the support surface promote the nucleation and growth of zeolite crystals on the support, resulting in dense membranes. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2679–2688, 2018  相似文献   

15.
Zeolite membranes offer outstanding potentials in separation of many molecular mixtures due to their molecular sieving selectivity and the high thermal and mechanical stability that allow them to operate at harsh conditions.Development of durable and high separation performance membranes with lower fabrication and operation cost are highly demanded for industrial applications. Zeolite T membrane possesses good acid-resistance with excellent hydrophilic properties as compared to NaA zeolite membrane and can be extended to industrial organic dehydrations under an acidic environment. In the present review the research advances in development of zeolite T membranes for the dehydration of organic mixtures in acidic conditions are summarized. Especially the low temperature synthesis, and epitaxial growth of the zeolite membrane with high performance are well addressed, besides emphasis is particularly placed on ensemble synthesis of hollow fiber zeolite T membrane module and its future prospects for industrial separations.  相似文献   

16.
Thin NaA zeolite membranes, with uniform and small crystals, were prepared on the tubular -Al2O3 support by adding a small amount of tetramethylammonium hydroxide (TMAOH) in the clear synthesis solution. The as-synthesized NaA zeolite membranes were characterized by XRD and SEM. The permeation properties of the membranes were evaluated by pervaporation and gas permeation. The effects of TMAOH amount on membrane formation and permeation properties were investigated. By addition of suitable amount of TMAOH in the clear synthesis solution, the crystals size of NaA zeolite could be remarkably reduced from about 10 μm to 3–4 μm, and the membrane thickness correspondingly reduced from about 16 μm to 5 μm. The thinner membrane prepared by adding TMAOH in the clear synthesis solution, with uniform and small crystal, displayed higher perm-selective properties than that without adding TMAOH. For the as-synthesized NaA zeolite membrane prepared with adding suitable amount of TMAOH (x = 1), the separation factor (water/isopropanol) was 4700 and the flux was 1.67 kg/(m2 h), which were higher than that without adding TMAOH of 339 and 1.08 kg/(m2 h), respectively. The ideal separation factor of H2/N2 was 6.60, higher than that without adding TMAOH of 3.41.  相似文献   

17.
采用稀释的水玻璃作为分散介质配成0.5%(w)的NaA沸石悬浮液,对粗孔a-Al2O3(孔径3~5 mm)载体管修饰并预涂晶种,进一步采取原位水热晶化法在a-Al2O3载体管外表面制备NaA沸石膜. 重复合成5次后,在载体表面形成一层致密、连续的沸石晶体层. 由XRD确定该晶体为A型沸石,由SEM可观察到膜厚约15~20 mm,膜表面上的沸石晶体大小约为3~5 mm,晶体之间紧密孪生在一起,看不出晶间空隙. 制备的NaA沸石膜的H2渗透率为3.0510-6 mol/(m2sPa), 对H2/N2和H2/C3H8的理想分离因数分别为6.9和15.6,超过对应的努森扩散值3.74和4.69,说明所制备的NaA沸石膜具有分子筛分性能.  相似文献   

18.
Different from traditional seeded method, NaA zeolite membranes (NZMs) were prepared by in situ synthesis onto the inner side of porous α-alumina tubular supports in a hydrothermal synthesis reactor. The influences of pretreatment of porous tubular support, temperature, time, and synthetic cycle for the synthesis of the zeolite membranes were investigated. The operating conditions were optimized. Characterization of the membranes by scanning electron microscopy and X-ray diffraction showed that the crystalline materials on the inner surface of the porous α-alumina tubes were NaA-type zeolite. Single- and binary-gas permeation tests were conducted. Single-component permeabilities of hydrogen and nitrogen through the NZM changed slightly when the transmembrane pressure difference varied from 80 to 420?kPa. Its selectivity for H2 relative to N2 was about 5.3, which was greater than that of the Knudsen diffusion. The separation factors of binary gases H2/N2 and H2/CO2 at 473?K were 3.9 and 5.7, respectively, again exceeding the Knudsen diffusion level. The separation of binary gases suggests that the NaA-type zeolite membranes on α-alumina substrate were defect free and able to provide molecular sieving. The results demonstrate that the unseeded synthetic method presented in this work is successful and reliable.  相似文献   

19.
Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes   总被引:3,自引:0,他引:3  
In this research, dehydration of water/1-1-dimethylhydrazine (UDMH) mixtures by zeolite NaA and hydroxy sodalite membranes has been investigated. Support of these membranes has been tubular mullites that have been made by extruding a mixture of about 67–75% kaolin clay and 33–25% distilled water using an extruder. Zeolite NaA and hydroxy sodalite membranes have been coated on the external surface of the porous supports by the hydrothermal synthesis.

UDMH/water mixtures have been separated at ambient temperature and pressure by pervaporation (PV) using these zeolite membranes. These membranes showed very high selectivity of water for all UDMH mixtures. For the UDMH/water mixtures, separation factor as high as 10 000 has been obtained for UDMH feed concentration of 2%. Total mass fluxes of 1.05–0.2 kg/(m2 h) have been also obtained.  相似文献   


20.
采用二次水热合成法在管状多孔莫来石支撑体上制备高耐酸性ZSM-5分子筛膜,系统地研究分子筛晶种和合成溶胶中H2O/SiO2摩尔比率对ZSM-5分子筛膜生长与渗透汽化性能的影响,采用X射线衍射、冷场扫描电子显微镜和电子能谱等表征技术分别对制备的ZSM-5分子筛及其ZSM-5分子筛膜的结构、形貌和Si/Al比进行表征。针对分离75℃、90% HAc/H2O的水溶液,最优化条件下制备的ZSM-5分子筛膜表现出优良的渗透汽化性能,渗透通量和分离因子分别为0.98kg/(m2·h)和890。此外,本研究所采用制备耐酸性ZSM-5分子筛膜的方法表现出良好的重现性,重复制备的12根ZSM-5分子筛膜在75℃下分离90% HAc/H2O的水溶液时,平均通量和分离系数分别为(0.85±0.15)kg/(m2·h)和650±290。再者,ZSM-5分子筛膜在45~75℃的温度范围内分离50%~95% HAc/H2O水溶液时都表现出优良的渗透汽化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号