首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(4):747-756
Abstract

Rice bran, an agricultural by‐product, was used for the removal of zinc ions from aqueous solution. The work considered the determination of zinc‐biomass equilibrium data in batch system. These studies were carried out in order to determine some operational parameters of zinc sorption such as the time required for the Zinc‐biosorbent equilibrium, the effects of biomass particle size, pH, and temperature. The results showed that pH has an importance effect on zinc biosorption capacity. The biosorbent size also affects the zinc biosorption capacity. The sorption process follows pseudo‐second‐order kinetics. The intraparticle diffusion may be the rate‐controlling step involved in the adsorption zinc ions onto the rice bran up to 30 min. The equilibrium data could be best fitted by the Langmuir sorption isotherm equation over the entire concentration range (40–160 mg/dm3). Thermodynamic parameters, such as ΔG°, ΔH°, ΔS°, have been calculated. The thermodynamics of zinc ion/rice bran system indicate spontaneous and endothermic nature of the process.  相似文献   

2.
《分离科学与技术》2012,47(16):2534-2539
The wheat bran was magnetically modified with microwave-synthesized magnetic iron oxides particles. Magnetic wheat bran was chosen as a biosorbent for removal of uranium from aqueous solutions. The uranium sorption increased with increasing pH and reached a plateau between pH 4.0 and 10.0. The increase of temperature slightly improved the sorption process. The uranium adsorption followed the Langmuir adsorption isotherm.  相似文献   

3.
4.
《分离科学与技术》2012,47(15):3499-3515
Abstract

The efficiency of using palm tree leaves to remove zinc ions from aqueous solution was studied. Adsorption isotherms, kinetics, and thermodynamics studies were conducted. The influence of different experimental parameters, such as equilibrium pH, shaking rate, temperature, and the presence of other pollutants such as chelating agents on the biosorption of zinc on palm tree leaves was investigated.

Batch biosorption experiments showed that palm tree leaves used in this study proved to be suitable for the removal of zinc from dilute solutions where a maximum uptake capacity of 14.7 mg/g was obtained at 25°C. Zinc biosorption on palm tree leaves was found to be highly pH dependent. The biosorption process was found to be rapid with 90% of the adsorption completed in about 10 min. Dynamics studies of the biosorption of zinc on palm tree leaves showed that the biosorption process followed the pseudo second‐order kinetics with little intraparticle diffusion mechanism contribution. The equilibrium results indicated that zinc biosorption on palm tree leaves could be described by the Langmuir, Freundlich, Gin et al., and Sips models. Using the Langmuir equilibrium constants obtained at different temperatures, the thermodynamics properties of the biosorption (ΔG0, ΔH0, and ΔS0) were also determined. The values of these parameters indicated the spontaneous and endothermic nature of zinc biosorption on palm tree leaves.  相似文献   

5.
米糠对苯胺的吸附行为及机理   总被引:9,自引:2,他引:7  
通过静态吸附实验,研究了米糠粒径、投加量、pH、温度等对米糠吸附苯胺效果的影响,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱探讨了吸附机理. 结果表明,在所研究的条件范围内,米糠对苯胺的吸附能力随着米糠粒径的增大而变小,随着温度的升高而增大,酸性条件有利于吸附进行;在303 K的中性环境下,饱和吸附量qmax可达1.34 mg/g. 米糠对苯胺的吸附遵循Langmuir等温线,吸附过程是自发进行的吸热反应,符合拟二级动力学反应控制的化学吸附过程,存在一定量的氢键吸附.  相似文献   

6.
《分离科学与技术》2012,47(17):2373-2393
Abstract

Cadmium biosorption was evaluated in 15 samples of heat-inactivated seaweeds collected from the coast of Rio de Janeiro State, Brazil. The classical Langmuir and Freundlich sorption models were fitted to the results in order to test whether these equations could appropriately describe the process of passive biosorption uptake. Depending on the algal sample and on some assumptions, both models could be applied to this study. The possible ion-exchange mechanism associated with the adsorption process was also investigated, as well as the effect of pH on biosorption and re-use of the different biomasses through several biosorption/ desorption cycles.  相似文献   

7.
Yan-Hui Li  Jun Ding  Zechao Di  Cailu Xu  Bingqing Wei 《Carbon》2003,41(14):2787-2792
The individual and competitive adsorption capacities of Pb2+, Cu2+ and Cd2+ by nitric acid treated multiwalled carbon nanotubes (CNTs) were studied. The maximum sorption capacities calculated by applying the Langmuir equation to single ion adsorption isotherms were 97.08 mg/g for Pb2+, 24.49 mg/g for Cu2+ and 10.86 mg/g for Cd2+ at an equilibrium concentration of 10 mg/l. The competitive adsorption studies showed that the affinity order of three metal ions adsorbed by CNTs is Pb2+>Cu2+>Cd2+. The Langmuir adsorption model can represent experimental data of Pb2+ and Cu2+ well, but does not provide a good fit for Cd2+ adsorption data. The effects of solution pH, ionic strength and CNT dosage on the competitive adsorption of Pb2+, Cu2+ and Cd2+ ions were investigated. The comparison of CNTs with other adsorbents suggests that CNTs have great potential applications in environmental protection regardless of their higher cost at present.  相似文献   

8.
Native stipe (NS) and microwave treated stipe (MTS) of Flammulina velutipes were utilized for the biosorption of Zn2+ and Pb2+ ions from aqueous solution. The effects of pH, contact time, and initial concentration on the biosorption were studied for each metal separately. The desired pH of aqueous solution was found to be 6.0 for the removal of Zn2+ ions and 5.0 for the removal of Pb2+ ions. The percent removal of both metals was found to increase with the increase in contact time; biosorption equilibrium was established in about 60 min. The maximum biosorption of Zn2+ and Pb2+ ions from single component systems can be successfully described by Langmuir and Freundlich models; the biosorption kinetics can be accurately described by a second-order kinetic model. The present data from these studies confirms that the native and microwave treated forms of Flammulina velutipes stipe have the potential to be used for the biosorption of Zn2+ and Pb2+ ions from aqueous solution. The metal biosorption capacities of NS for Zn2+ and Pb2+ were 58.14 and 151.51 mg g?1, respectively, while the biosorption capacities of MTS for the both metals were 95.24 and 172.41 mg g?1, respectively.  相似文献   

9.
The potential use of a biosorbent, Cystoseira indica, obtained from the Persian Gulf was investigated for the removal of Th (IV) ions from aqueous solutions by considering equilibrium, kinetic and thermodynamic aspects. The FT-IR spectra of unloaded and Th-loaded biomass indicated various functionalities on the biomass surface including hydroxyl, amide and carboxyl groups, which are responsible for the binding of thorium ions. Th (IV) uptake by C. indica was pH dependent. An increase in biosorbent dosage up to 1 g/L caused an increase in the Th (IV) percentage removal. Biosorption process at all studied initial Th (IV) ion concentrations follows the pseudo-second order kinetic model. The biosorption data could be well described by Redlich-Peterson isotherm in comparison to Langmuir and Freundlich isotherms. The maximum sorption capacity of Th (IV) by Langmuir isotherm was estimated to be 169.49 mg/g at 45 °C with pH of 3. The thermodynamic parameters indicated the biosorption of Th on the biomass was a feasible, spontaneous and endothermic process. Th sorption capacity remained unaffected or slightly affected (<10% inhibition) in the presence of several interfering ions such as uranium (VI), nickel (II) and copper (II). The reusability of the biomass was also determined after five sorption-desorption cycles.  相似文献   

10.
This work investigates the removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent under both batchwise and fixed‐bed conditions. It was found that modification of the tururi fibers with sodium hydroxide increased the adsorption efficiencies of all metal ions studied. The fractional factorial design showed that pH, adsorbent mass, agitation rate, and initial metal concentration influenced each metal adsorption differently. The kinetics showed that multi‐element adsorption equilibria were reached after 15 min following pseudo‐second‐order kinetics. The Langmuir, Freundlich, and Redlich–Peterson models were used to evaluate the adsorption capacities by tururi fibers. The Langmuir model was found to be suitable for all metal ions. Breakthrough curves revealed that saturation of the bed was reached in 160.0 mL with Cd2+ and Cu2+, and 52.0 mL with Ni2+ and Pb2+. The Thomas model was applied to the experimental data of breakthrough curves and represented the data well. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40883.  相似文献   

11.
Trichoderma reesei was used as a biosorbent for the removal of Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions. The influence of factors such as pH, mass of biomass, contact time and temperature on biosorption efficiency was optimized. To calculate the isotherm parameters for the biosorption of Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions at optimized conditions, the experimental equilibrium data were fitted to Langmuir and Freundlich models. The calculated thermodynamic parameters, ΔG°, ΔH° and ΔS° showed that the biosorption of Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions onto T. reesei biomass was feasible, spontaneous and endothermic at the optimized conditions. The results of kinetic analysis showed that the biosorption of the selected metal ions onto T. reesei biomass obeys pseudo second order kinetics.  相似文献   

12.
The inactivation of rice bran lipase was studied in vitro and in vivo using metal ions in methanol or HCl. Lipase was extracted from rice bran in 0.1 M potassium phosphate buffer, pH 7.0 and purified by ammonium sulphate fractionation. The 25–55% ammonium sulphate fraction was subjected to DEAE-cellulose ion exchange chromatography and the fraction (F6) eluted at Ve/Vo of 14.37 was purified about 333-fold. In-vitro studies on F6 lipase showed that Fe3+ and Ni2+ completely inhibited the lipase activity at 5 × 10?5 M concentration, while Zn2+ and Cu2+ did so at 2.5 × 10?4 M. The results on in-vivo inactivation of rice bran lipase showed that Fe3+ and Ni2+ at 200 μg g?1 significantly checked the release of free fatty acids (FFA) from rice bran for 6 days of storage when compared with using concentrated HCl (2%, v/w) only. The triglyceride content of oil was also maximum with Fe3+ and Ni2+ treatment at 200 μg g?1. The present results suggest that Fe3+ and Ni2+ could be effectively used to arrest the release of FFA in rice bran and thus contribute to improving the edible quality of rice bran oil.  相似文献   

13.
盛姣  冯贤  曾桂华  郭海彦 《广州化工》2011,39(20):75-76,113
以微生物发酵米糠为吸附剂,研究了吸附剂的用量、溶液温度、Cd2+浓度、溶液pH值以及吸附时间对吸附剂吸附性能的影响。研究结果表明,微生物发酵米糠对Cd2+有较好的吸附效果,吸附率达93.8%。其最佳吸附条件为:微生物发酵米糠用量20 g/L,温度30℃,pH=3,Cd2+质量浓度低于50 mg/L,吸附平衡时间60 min。  相似文献   

14.
K. Shahzad Baig  J. Wu 《Desalination》2009,249(1):429-439
The capability of wheat straw to adsorb Ni2+ and Zn2+ was investigated using a batch system. The equilibrium removal of metal ions was obtained between 2.5 and 5 h for Ni2+ and about 3 h for Zn2+ over the initial concentration range from 5 to 150 ppm. Of the total amount of metal uptake by wheat straw, about 50% was adsorbed in the first 30 min. At a low initial concentration of 5 ppm, wheat straw was capable to reduce the metal concentration down to less than 1 ppm. For single-metal solutions, among the three models tested, namely the Langmuir, the Freundlich and the Temkin isotherms, the Freundlich model was suitable to describe the adsorption equilibrium for Ni2+ and Zn2+. For bimetal solutions, the IAST-Freundlich multicomponent isotherm best fitted the experimental data, among the four isotherm models investigated, the modified Langmuir multicomponent model, the Langmuir partially competitive model, the Freundlich multicomponent model and the IAST-Freundlich multicomponent model. The negative Gibbs free energy changes obtained at lower concentrations indicates that the adsorption was spontaneous. However, the spontaneity of the biosorption decreased with increases in the metal concentration from 5 to 50 ppm. For metal concentrations higher than 50 ppm, the adsorption became non-spontaneous. Scanning electron microscopic (SEM) images of wheat straw were also taken to exam the surface structure of the wheat straw along with the energy dispersive spectrum (EDS) analysis. The results obtained confirmed the adsorption of Ni2+ and Zn2+ on wheat straw, and showed that the inner surface of the wheat straw appeared to provide more adsorption sites for metal binding.  相似文献   

15.
《分离科学与技术》2012,47(15):3770-3791
Abstract

The present study reports the potential of mango peel waste (MPW) as an adsorbent material to remove Cu2+, Ni2+, and Zn2+ from constituted metal solutions and genuine electroplating industry wastewater. Heavy metal ions were noted to be efficiently removed from the constituted solution with the selectivity order of Cu2+ > Ni2+ > Zn2+. The adsorption process was pH-dependent, while the maximum adsorption was observed to occur at pH 5 to 6. Adsorption was fast as the equilibrium was established within 60 min. Maximum adsorption of the heavy metal ions at equilibrium was 46.09, 39.75, and 28.21 mg g for Cu2+, Ni2+, and Zn2+, respectively. Adsorption data of all the three metals fit well the Langmuir adsorption isotherm model with 0.99 regression coefficient. Release of alkali and alkaline earth metal cations (Na+, K+, Ca2+, Mg2+) and protons H+ from MPW, during the uptake of Cu2+, Ni2+, and Zn2+, and EDX analysis of MPW, before and after the metal sorption process, revealed that ion exchange was the main mechanism of sorption. FTIR analysis showed that carboxyl and hydroxyl functional groups were involved in the sorption of Cu2+, Ni2+, and Zn2+. MPW was also shown to be highly effective in removing metal ions from the genuine electroplating industry effluent samples as it removed all the three metal ions to the permissible levels of discharge legislated by environment protection agencies. This study indicates that MPW has the potential to effectively remove metal ions from industrial effluents.  相似文献   

16.
《分离科学与技术》2012,47(15):2293-2301
The capacity of Ganoderma lucidum biomass for biosorption of selenium (IV) ions from aqueous solution was studied in a batch mode. In this study the effects of operating parameters such as solution pH, adsorbent dosage, initial metal concentration, contact time, and temperature were investigated. The adsorption capacity of G. lucidum was found to be 126.99 mg g?1. The biosorption follows pseudo-first order kinetics and the isotherms fit well to both Langmuir and Freundlich isotherm models. Isotherms have been used to determine thermodynamic parameters of the process, that is, free energy, enthalpy, and entropy changes. Furthermore, the biosorbent was characterized by scanning electron microscopy and FT-IR analysis. FT-IR analysis of fungal biomass shows the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which were responsible for the biosorption of selenium(IV) ions. The results indicated that the biomass of G. lucidum is an efficient biosorbent for the removal of selenium (IV) ions from aqueous solutions.  相似文献   

17.
The kinetic models for sorption of La3+, Ce3+ and Nd3+ ions on poly-o-toluidine Zr(IV) tungstophosphate (POTZr(IV)WP) were investigated under effecting of contact time, initial concentration and temperature. A comparison of kinetic models applied to the adsorption rate data of La3+, Ce3+ and Nd3+ ions on POTZr(IV)WP was evaluated for the pseudo-first order, the pseudo-second order, homogeneous particle diffusion and intra-particle diffusion kinetic models. The results showed that both the pseudo second-order and the homogeneous particle diffusion models were found to best correlate the experimental rate data. The particle diffusion coefficients (Di) and energy of activation (Ea) have been estimated. These investigations revealed that the equilibrium is attained faster at higher temperatures.  相似文献   

18.
《分离科学与技术》2012,47(4):923-943
Abstract

The sorption behavior of 2.7×10?5 M solution of Th(IV) ions on 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated. The quantitative sorption was occurred from pH 6 to 9 from acetate buffer solutions. The sorption conditions were optimized with respect to pH, shaking time, and weight of sorbent. The sorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms very successfully at low metal ions concentration. The Freundlich isotherm constant (1/n) is estimated to be 0.22±0.01, and reflects the surface heterogeneity of the sorbent. The Langmuir isotherm gives the maximum monolayer coverage is to be 8.61×10?6 mol g?1. The sorption free energy of the D‐R isotherm was 17.85±0.33 kJ mol?1, suggesting chemisorption involving chemical bonding was responsible for the adsorption process. The numerical values of thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) indicate that sorption is endothermic, entropy driven, and spontaneous in nature. The adsorption free energy (ΔGads) and effective free energy (ΔGeff) are also evaluated and discussed. The effect of different anions on the sorption of Th(IV) ions onto PAN loaded PUF was studied. The possible sorption mechanism on the basis of experimental finding was discussed. A new separation procedure of Th(IV) from synthetic rare earth mixture using batch, column chromatography, and squeezing techniques were reported.  相似文献   

19.
A novel, specific sorbent based on polyamide covalently immobilized with dead yeast cells by glutaraldehyde was prepared and characterized. This sorbent exhibits a high capacity for metal complexation based on multifunctional groups of dead cells, as well as a good stability for reuse based on the crosslinking agent, glutaraldehyde. The Cu2+ sorption characteristics of the polyamide modified with immobilized dead cells were studied and compared to those of the polyamide chemically modified without cells. The adsorption capacity of specifically modified polyamide was about 19‐fold higher than the chemically modified polymer. The adsorption isotherms of Langmuir and Freundlich for the new specific sorbent were determined. The effect of pH, temperature and co‐ions (Zn2+, Pb2+, Co2+, Ca2+ and Mg2+) on the Cu2+ sorption capacity were studied. The effectiveness of heavy metal desorption and the coefficient of recovery of sorption ability were determined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 80–85, 2003  相似文献   

20.
The present research provides information on the Cr(VI) removal potential of NaCl-modified Ceratophyllum demersum, an aquatic plant biomass. The effects of various parameters including pH, biomass dosage, contact time, and initial concentration on Cr(VI) biosorption were investigated. The best conditions for Cr(VI) biosorption in the present study were: pH of 2, biosorbent dose of 8 g/L, and contact time of 60 min. Under these conditions, maximum adsorption capacity of modified C. demersum for Cr(VI) was 10.20 mg/g. The experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with a high coefficient of determination (R2 > 0.99). The biosorption process followed pseudo-second-order kinetics. Further, the biosorbent was characterized by Fourier transform-infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The results showed that biosorption of Cr(VI) on NaCl-modified C. demersum occurred through chemical sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号