首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the preparation and characterization of the novel pH-sensitive poly(acrylamide-co-2-methacryloyloxy)ethyltrimethyl ammonium chloride)/montmorillonite (p(AAm-co-METAC)/MMT) composite superabsorbent hydrogels and their selective metal absorbtion properties were investigated. The adsorption of metal ions is highly dependent on the initial feed concentration, contact time, pH of the metal solution and adsorbent doses. The results were analyzed both by the Langmuir and Freundlich isotherms and the adsorption is found to follow pseudo-second-order kinetics. The adsorption capacity followed the order Zn2+ > Ni2+ > Cu2+ > Pb2+ and the maximum adsorption capacities of them were ~320, 285, 240 and 120 (mg g?1), respectively.  相似文献   

2.
Peach stones (PS) modified by citric acid (MPS) were used to remove heavy metals and methylene blue (MB) from wastewater. The effects of experimental factors such as pH, adsorbent dosage and contact time, etc. were conducted. Moreover, the adsorption kinetics and isotherm studies also were investigated. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb2+, Cd2+, Cu2+ and MB were 118.76, 37.48, 32.22 and 178.25 mg/g, respectively. Finally, column experiments were also carried out to investigate the adsorption of Pb2+ and MB. All results indicated that PS has a good potential for the treatment of wastewater.  相似文献   

3.
《分离科学与技术》2012,47(3):507-517
The adsorption characteristics of Pb2+ on pre-boiled treated onion skins (PTOS) and formaldehyde-treated onion skins (FTOS) were evaluated. The effects of Pb2+ initial concentration, agitation rate, solution pH, and temperature on Pb2+ adsorption were investigated in batch systems. Pb2+ adsorption was found to increase with increase in initial concentration. The point of zero net charge (PZC) was 6.53. The optimum pH for the maximum removal of Pb2+ was 6.0. The adsorption equilibrium data was best represented by the Langmuir isotherm model for FTOS and the Freundlich isotherm model for PTOS. The maximum amounts of Pb2+ adsorbed (qm), as evaluated by the Langmuir isotherm, was 200 mgg?1 for FTOS. The efficiencies of PTOS and FTOS for Pb2+ removal were 84,8.0% and 93.5% at 0.15 g/200 mL?1 adsorbent dose, respectively. (C 0 = 50 mg L?1). Study concluded that onion skins, a waste material, have good potential as an adsorbent to remove toxic metals like Pb2+ from water. Boehm titration analysis was conducted to determine the surface groups. It was found that the adsorption kinetics of Pb2+ obeyed pseudo-first-order kinetic model as based on Δq (%) values. FTIR and SEM images before and after adsorption was recorded to explore changes in adsorbent-surface morphology. Activation energy (Ea) was obtained as 25.596 kJ/mol.  相似文献   

4.
Yan-Hui Li  Jun Ding  Zechao Di  Cailu Xu  Bingqing Wei 《Carbon》2003,41(14):2787-2792
The individual and competitive adsorption capacities of Pb2+, Cu2+ and Cd2+ by nitric acid treated multiwalled carbon nanotubes (CNTs) were studied. The maximum sorption capacities calculated by applying the Langmuir equation to single ion adsorption isotherms were 97.08 mg/g for Pb2+, 24.49 mg/g for Cu2+ and 10.86 mg/g for Cd2+ at an equilibrium concentration of 10 mg/l. The competitive adsorption studies showed that the affinity order of three metal ions adsorbed by CNTs is Pb2+>Cu2+>Cd2+. The Langmuir adsorption model can represent experimental data of Pb2+ and Cu2+ well, but does not provide a good fit for Cd2+ adsorption data. The effects of solution pH, ionic strength and CNT dosage on the competitive adsorption of Pb2+, Cu2+ and Cd2+ ions were investigated. The comparison of CNTs with other adsorbents suggests that CNTs have great potential applications in environmental protection regardless of their higher cost at present.  相似文献   

5.
A novel, specific sorbent based on polyamide covalently immobilized with dead yeast cells by glutaraldehyde was prepared and characterized. This sorbent exhibits a high capacity for metal complexation based on multifunctional groups of dead cells, as well as a good stability for reuse based on the crosslinking agent, glutaraldehyde. The Cu2+ sorption characteristics of the polyamide modified with immobilized dead cells were studied and compared to those of the polyamide chemically modified without cells. The adsorption capacity of specifically modified polyamide was about 19‐fold higher than the chemically modified polymer. The adsorption isotherms of Langmuir and Freundlich for the new specific sorbent were determined. The effect of pH, temperature and co‐ions (Zn2+, Pb2+, Co2+, Ca2+ and Mg2+) on the Cu2+ sorption capacity were studied. The effectiveness of heavy metal desorption and the coefficient of recovery of sorption ability were determined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 80–85, 2003  相似文献   

6.
Amine‐type adsorbents were prepared by radiation‐induced graft polymerization. The sorption behaviors for an individual metal ion of Cu2+ and Pb2+ separately, as well as with mixed Cu2+/Pb2+, were studied in both column and batch mode. Ethylenediamine‐type adsorbent exhibited a high capacity for Cu2+ and Pb2+ at a high flow rate of 1000 h?1, but low selectivity in the mixed Cu2+/Pb2+ solutions. Radiation‐induced crosslinking of the amine‐type adsorbent was performed in water to improve selectivity. Crosslinking of the material was demonstrated by gel fraction, water content, and scanning electron microscopy image. Compared with the results from the noncrosslinked adsorbents, the breakthrough curve of Cu2+ right shifted, whereas the breakthrough curve of Pb2+ left shifted, indicating the higher adsorption capacity of Cu2+ and the lower adsorption capacity of Pb2+ from the crosslinked adsorbent. After 300 kGy irradiation, the crosslinked adsorbent was found to selectively adsorb Cu2+ from the mixed Cu2+/Pb2+ solution. The results revealed that crosslinking raised the selectivity of the adsorbents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Removal of heavy metals from water and wastewaters has recently gained a great deal of attention due to their serious environmental problems. In this study, novel synthesized calcium carbonate nanoparticles, prepared in a colloidal gas aphron (CGA) system, were used as adsorbents for the removal of Cu2+ ions from aqueous solutions under different conditions. A developed pseudo-second-order (PSO) model well described the adsorption kinetics of the process. Langmuir and Freundlich adsorption isotherms have been examined and the maximum adsorption capacity from the Langmuir isotherm equation was found to be 666.67?mg Cu/g adsorbent. The effects of temperature, Cu2+ initial concentration, and CaCO3 dosage on the removal capacity were also investigated using the three-level Box–Behnken experimental design method. The response surface modeling results demonstrated that under certain experimental conditions (i.e., T?=?26°C, [Cu2+]?=?200?mg/L, and [CaCO3]?=?0.5?g/L), maximum removal capacity value (393.52?mg/g) was achieved.  相似文献   

8.
《分离科学与技术》2012,47(7):1096-1103
A novel welan gum-modified cellulose adsorbent was prepared through emulsification, regeneration, and modification. SEM and FTIR were used to characterize the modified cellulose adsorbent. The adsorption isotherms of metal ions on the adsorbent were well fitted by Langmuir model, with the maximum adsorption capacities of 83.6, 77.0, and 67.4 mg/g for Cd2+, Pb2+, and Cu2+, respectively. The adsorption kinetics was well described using the pseudo-first-order model. Moreover, the adsorption capacities for the three metal ions increased with the increase of temperature, and the optimal pH was 5. Furthermore, the thermodynamic analysis indicated that the adsorption processes were spontaneous and endothermic.  相似文献   

9.
In this study, L-cystein modified bentonite-cellulose (cellu/cys-bent) nanocomposite was synthesized and characterized by XRD, FTIR, SEM with EDS, TGA, and TEM techniques. In order to optimize the process the effect of various operational parameters such as pH, adsorbent dosage, contact time, and temperature were also investigated. The adsorption experiments were carried out in initial concentrations range of 20-100 mg L?1and the adsorbent affinity for metal ions was found to be in order of Cu2+ > Pb2+ > Cd2+. The optimum pH for adsorption of Cu2+ and Cd2+ was observed at 5 while for Pb2+ it was pH 6. Based on the Langmuir model, the maximum adsorption capacity of Cu2+, Pb2+, and Cd2+ at 50?C was found to be 32.36, 18.52, and 16.12 mg g?1, respectively. The Langmuir isotherm and pseudo-second order model were found to be better fitted than the other isotherms and kinetic models. The results of thermodynamic parameters confirmed the process to be endothermic and spontaneous in nature.  相似文献   

10.
This work investigates the removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent under both batchwise and fixed‐bed conditions. It was found that modification of the tururi fibers with sodium hydroxide increased the adsorption efficiencies of all metal ions studied. The fractional factorial design showed that pH, adsorbent mass, agitation rate, and initial metal concentration influenced each metal adsorption differently. The kinetics showed that multi‐element adsorption equilibria were reached after 15 min following pseudo‐second‐order kinetics. The Langmuir, Freundlich, and Redlich–Peterson models were used to evaluate the adsorption capacities by tururi fibers. The Langmuir model was found to be suitable for all metal ions. Breakthrough curves revealed that saturation of the bed was reached in 160.0 mL with Cd2+ and Cu2+, and 52.0 mL with Ni2+ and Pb2+. The Thomas model was applied to the experimental data of breakthrough curves and represented the data well. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40883.  相似文献   

11.
A kind of adsorbent for metal ions, cotton fiber coated by high loading of chitosan (SCCH) was prepared. Its structure was characterized by elemental analysis, scanning electronic microscopy (SEM), Fourier transform infrared spectrum (FTIR), and wide‐angle X‐ray diffraction (WAXD). The adsorption properties of SCCH for Cu2+, Ni2+, Pb2+, Cd2+, such as saturated adsorption capacities, static kinetics, and isotherm were investigated. The adsorption for Ni2+, Pb2+, and Cd2+ was controlled by liquid film diffusion, but by particle diffusion for Cu2+. The adsorption process for Cu2+, Ni2+, Cd2+ could be described with Langmuir or Freundlich equation, but only with Freundlich equation for Pb2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
A novel graft copolymer gel made up of pectin (Pec), 2-(methacryloyloxyethyl)trimethylammonium chloride (METAC), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and its composite with montmorillonite (MMT) were prepared using methylenebisacrylamide (MBA) as cross-linker via microwave irradiation and characterized using Fourier transform infrared (FTIR), Thermogravimetric Analysis (TGA) and Scanning electron microscopy (SEM) techniques. Swelling studies were carried out under different pH conditions. The graft copolymer gel and its composite showed maximum swelling in neural medium (pH 7.1) and the swelling process followed second order kinetics. The mechanism of water transport is found to be a Less Fickian diffusion process. The adsorption capacities of the graft copolymer gel and the composite towards divalent metal ions (Cu2+, Pb2+ and Hg2+) were evaluated. The adsorption capacity of the representative samples, Pec-g-poly(METAC-co-AMPS)-A5 and Pec-g-poly(METAC-co-AMPS)/MMT-C2 respectively for Cu2+ are 30.71 and 39.18 mg/g; for Pb2+ are 58.06 and 79.78 mg/g and for Hg2+ are 12.16 and 19.58 mg/g. The re-usability of the materials was also evaluated. The % recovery for the above two systems towards metals ion are 87.91 and 63.46 for Cu2+, 32.13 and 58.30 for Pb2+ and 78.53 and 51.92 for Hg2+. respectively. The adsorption isotherm studies indicated the adsorption of Pb2+, Cu2+ and Hg2+ in both samples is explained best by the Freundlich model except of Hg2+ by Pec-g-poly(METAC-co-AMPS)-A5, which is best explained by the Langmuir model.  相似文献   

13.
The fabrication of high-efficiency and low-cost adsorbent for the wastewater treatment is a challenging task. In this study, a hollow sphere adsorbent was synthesized from solid waste coal gangue through a facile spray drying method and subsequent calcination. The structure of the synthesized coal gangue microsphere (CM) have been characterized by multimethods including X-ray diffraction, scanning electron microscope, Fourier transform infrared, and others. The factors influencing the adsorption for Cu2+ and Pb2+ by CM were also investigated systemically; pH between 6 and 8 was found to be optimal for Cu2+ and Pb2+ adsorption. The isotherm and kinetic analysis reveal that the adsorption process could be well represented by Langmuir and pseudo–second-order model with a higher R2 and low χ2 value. According to Langmuir model, the maximum adsorption capacity was calculated to be 6.570 and 18.904 mg/g for Cu2+ and Pb2+ at 25°C, respectively. The adsorption mechanism was proposed to contain not only the surface reaction process, but also the diffusion process. Consequently, the economic and environmental benefits make CM a promising adsorbent in wastewater treatment.  相似文献   

14.
A novel biosorbent was developed by the crosslinking of an anionic biopolymer, calcium alginate, with glutaraldehyde. The glutaraldehyde‐crosslinked calcium alginate (GCA) was characterized by Fourier transform infrared spectroscopy and porosity and surface area analysis. The batch equilibrium and column flow adsorption characteristics of fluoride onto the biosorbent were studied. The effects of the pH, agitation time, concentration of adsorbate, and amount of adsorbent on the extent of adsorption were investigated. The experimental data were fitted to the Langmuir and Freundlich adsorption isotherms. The data were analyzed on the basis of the Lagergren pseudo‐first‐order, pseudo‐second‐order, and Weber–Morris intraparticle diffusion models. The maximum monolayer adsorption capacity of the GCA sorbent as obtained from the Langmuir adsorption isotherm was found to be 73.5 mg/g for fluoride. The χ2 and sum of squares of the error analysis were used to correlate the equilibrium isotherm models and kinetics. In addition, breakthrough curves were obtained from column flow experiments. The experimental results demonstrate that the GCA beads could be used for the defluoridation of drinking water through adsorption. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
《分离科学与技术》2012,47(16):2539-2548
S-doped TiO2 as a novel adsorbent for Cu2+ cations removal from aqueous solutions was synthesized by simple sol-gel process. Removal of Cu2+ cations from aqueous solutions was investigated with particular reference to the effects of initial Cu2+ cations concentration, pH-value, adsorbent dosage, and temperature on adsorption. It was found that the maximum adsorption capacity was 96.35 mg g?1 at 328 K. The adsorption equilibrium isotherms and the kinetic data were well described by the Langmuir and pseudo-second-order kinetic models, respectively. The high uptake capability of S-doped TiO2 makes it a potentially attractive adsorbent for the removal of heavy metal pollutants from aqueous solution.  相似文献   

16.
In this study, bentonite originating from Turkey (Eski?ehir province) and activated carbon obtained from grapeseed were used as adsorbents for the removal of lead (Pb2+) and copper (Cu2+) ions from aqueous solutions. Experiments were performed in single- and binary-ion systems at constant temperature of 298 K and pH value of 5. In order to describe the adsorption mechanism Langmuir, Freundlich and Temkin isotherms were used. The total adsorption capacity values of adsorbents were compared. It was observed that the total adsorption capacity values were changed depending on the type of adsorbent used, type of metal ion and interaction between metal ions.  相似文献   

17.
《分离科学与技术》2012,47(6):1365-1381
Abstract

A composite chitosan biosorbent (CCB) was prepared by coating chitosan on to ceramic alumina. The adsorption characteristics of the sorbent for copper and nickel ions were studied under batch equilibrium and dynamic flow conditions at pH 4.0. The equilibrium adsorption data were correlated with Langmuir, Freundlich, and Redlich‐Peterson models. The ultimate monolayer capacities, obtained from Langmuir isotherm, were 86.2 and 78.1 mg/g of chitosan for Cu(II) and Ni(II), respectively. In addition, dynamic column adsorption studies were conducted to obtain breakthrough curves. After the column was saturated with metal ions, it was regenerated with 0.1 M sodium hydroxide. The regenerated column was used for a second adsorption cycle.  相似文献   

18.
Dextrin as a biodegradable natural polymer has hydrophilic nature that capable to increase the swelling properties and biodegradability of the synthetic hydrogels. This study describes the synthesis of a poly (acrylic acid-co-acryloyl tetrasodium thiacalix[4]arene tetrasulfonate) grafted dextrin superabsorbent hydrogels (ADA) via solution polymerization. The effects of acryloyl tetrasodium thiacalix[4]arene tetrasulfonate (ACSTCA) dose (20–60) on swelling properties of the hydrogels were studied. The synthesized hydrogels were characterized by FTIR, TGA, DMTA and rheometry. The metal ion removal capacity of the gels was investigated by atomic absorption for Cd2+, Pb2+, and Hg2+. The tendency of metal ions adsorption decreased in the order of Pb2+>Cd2+>Hg2+. The effect of key operating parameters including ACSTCA content, contact time, adsorbent dosage, solution pH, and crosslinker density was experimentally studied on Pb2+ adsorption from aqueous solution. The equilibrium data was analyzed using Langmuir and Freundlich adsorption isotherms. Our experimental data are in best agreement with Freundlich isotherms, and adsorption of metal cation onto hydrogel followed a pseudo second-order kinetic model. According to the thermodynamic parameters, the adsorption of Pb2+ occurred spontaneously. The hydrogels could be regenerated after releasing heavy metal ions, and reused 5 times with less than 7 % loss of adsorption capacity.  相似文献   

19.
《分离科学与技术》2012,47(17):2659-2669
In this work, arabinoxylan-graft-acrylic acid (AX-g-AA) hydrogel was prepared and used as an adsorbent to remove and recover Cu2+ and Ni2+ from aqueous solutions. The influences of pH, ligand content on the adsorption capacity of the hydrogel, adsorption equilibrium, and kinetic were studied in detail. The competitive adsorption and recovery of heavy metal ions, regeneration and reusability of the hydrogel were present. Furthermore, the relationship between the physiochemical properties of the adsorbent and its adsorption performance was also studied. The results showed that a more expanded network favored the diffusion and adsorption of metal ions. Cu2+ and Ni2+ uptake by this hydrogel was pH and concentration dependent with the maximum loading of 330.1 mg/g for Cu2+ and 248.7 mg/g for Ni2+. The pseudo-second-order kinetics suggested that the ion exchange process was chemisorption-controlled. The Langmuir equation could well describe the isotherm data. Cu2+ and Ni2+ adsorbed on the hydrogel could be effectively recovered in a diluted HNO3 solution (0.01 M) in 30 min. AX-g-AA hydrogel also exhibited highly efficient reusability, and thus could be used repeatedly.  相似文献   

20.
Because of the presence of carboxylic acid moieties, poly(acrylic acid) possesses a unique ability to form stable complexes with divalent metal ions. However, its practical use for the removal of heavy metals from aqueous solutions is restricted because of its inherent water solubility. To address this issue, crosslinking of this polymer has been attempted to synthesize hydrogel, which is stable in aqueous medium over a wide range of pH values. The hydrogels, prepared by redox polymerization of acrylic acid in the presence of polyethylene glycol diacrylate as the crosslinker, were characterized by Fourier transform infrared spectrometry, elemental analysis, thermal analysis, and swelling studies. This chelating hydrogel‐bearing O, O donor groups exhibited high‐metal sorption capacity of 41.1, 58.2, 43.1, and 81.2 mg/g for Cr6+, Ni2+, Cu2+, and Pb2+, respectively, under optimum conditions. The effect of parameters including pH, concentration, and interference of common ions on metal uptake was also investigated. Langmuir and Freundlich adsorption isotherms have been used to validate the metal uptake data. High recovery (>97%) was achievable for all metal ions with 1N HCl as eluting agent, and the regeneration tests revealed that the sorbent could be used repeatedly for at least 10 cycles without any loss in chelating efficiency. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号