首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Distillation/dehydration represents the largest fraction of the energy used in the production of ethanol. The Siftek™ technology introduced in this paper carries the potential of reducing energy consumption of distillation/dehydration by up to 50% through the single pass removal of water from the water/ethanol stream at the beer column outlet, using a novel membrane process.Siftek™ is a polymeric membrane that can be used to dry ethanol in the vapor phase. The membrane preferentially permeates water over ethanol in a continuous process. Energy reductions are obtained because this membrane is well suited to remove large quantities of water without phase change.The Siftek™ technology has been piloted since August 2006 in a Greenfield Ethanol plant in Tiverton, Ontario, Canada. The Tiverton unit has a capacity of 1 m3/d and has been producing fuel ethanol from a feed containing between 75 and 90 wt.% ethanol in a single stage system.Based on the successful operation of the pilot, it was decided to scale-up the technology. A two-stage membrane system with a capacity of 20 m3/d was built for the Greenfield Ethanol plant in Chatham, Ontario, Canada. The unit is equipped with full-scale commercial membrane modules and is capable of treating a beer-column feed containing 60-70 wt.% ethanol, producing > 99 wt.% fuel-grade ethanol.  相似文献   

2.
BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The objective of this work is to estimate the energy and process costs required to make a fuel grade ethanol (0.5 wt% water) from 1 and 5 wt% ethanol aqueous streams using the proposed process. RESULTS: Using process simulation and spreadsheeting software, the proposed membrane‐assisted vapor stripping process was estimated to require as little as 8.9 MJ of fuel‐equivalent energy per kg of fuel grade ethanol recovered from a 1 wt% ethanol feed stream, 2.5 MJ kg?1 for a 5 wt% ethanol solution. This represents an energy saving of at least 43% relative to standard distillation producing azeotropic ethanol (6 wt% water). Process costs were also found to be lower than for distillation at the 3.0 × 106 kg‐ethanol year?1 scale modeled. CONCLUSION: In this hybrid system, the stripping column provides high ethanol recoveries and low effluent concentrations while the vapor compression‐membrane component enables the efficient recovery of latent and sensible heat from both the retentate and permeate streams from the membrane system. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   

3.
BACKGROUND: The energy demand of distillation‐based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step, termed membrane assisted vapor stripping (MAVS), has been proposed. The hydrophilic membrane separates the ethanol–water vapor into water‐rich permeate and ethanol‐enriched retentate vapor streams from which latent and sensible heat can be recovered. The objective of this work was to demonstrate experimentally the performance of a MAVS system and to compare the observed performance with chemical process simulation results using a 5 wt% ethanol aqueous feed stream as the benchmark. RESULTS: Performance of the steam stripping column alone was consistent with chemical process simulations of a stripping tower with six stages of vapor liquid equilibria (VLE). The overhead vapor from the stripper contained about 40 wt% ethanol and required 6.0 MJ of fuel‐equivalent energy per kg of ethanol recovered in the concentrate. Introduction of the vapor compressor and membrane separation unit and recovery of heat from both membrane permeate and retentate streams resulted in a retentate ethanol concentrate containing ca 80 wt% ethanol, but requiring only 2.2 MJ fuel kg?1 ethanol, significantly less than steam stripping alone. CONCLUSION: Performance of the experimental unit with a 5 wt% ethanol feed liquid corroborated chemical process simulation predictions for the energy requirement of the MAVS system, demonstrating a 63% reduction in the fuel‐equivalent energy requirement for MAVS compared with conventional steam stripping or distillation. Published 2009 by John Wiley & Sons, Ltd.  相似文献   

4.
A new air-gap membrane distillation (AGMD) module for desalination with internal latent-heat-recovery which consisted of parallel hollow fiber membranes and heat exchange hollow fibers was successfully developed. The influences of feed flow rate, feed temperature and feed initial concentration on AGMD process were investigated. The vapor pressure polarization coefficient (η) was introduced to measure the reduction in the effective driving force for mass transfer with regard to the driving force imposed. Among all AGMD experiments, the maximum water vapor permeate flux (JD) of 5.30 kg/m2 h and the gained output ratio (GOR) of 5.70 were obtained. A theoretical model based on the mass and energy balances of the hot feed side was established to calculate the temperature and the local water vapor permeate flux distributions along the hollow fiber membrane, which showed that the temperature drop and local water vapor permeate flux drop were much larger at the upper part than those at the lower part of the membrane module in the hot feed side.  相似文献   

5.
The transport of water vapor through a composite membrane consisting of hydrophilic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) as the active layer and polyacrylonitrile (PAN) as the substrate was investigated, and the performance of the membrane for gas dehydration and humidification applications was evaluated. For gas dehydration, methane/water vapor mixtures were used as feed and vacuum was applied on the downstream side. The feed composition and operating temperature were found to have a significant effect on the membrane performance. The PAN substrate had little effect on the permeation of methane, but the resistance of the substrate to water vapor permeation was significant because of the substantially higher permeability of water vapor in the membrane. For gas humidification, liquid water was brought to be in contact with the active layer of the membrane and nitrogen gas flowed on the other side. With an increase in the gas flow rate, the mass transfer rate of water through the membrane to reach the gas stream increased, and the humidity level of the gas stream decreased. The humidification can be enhanced significantly by operating at a higher temperature. A phenomenological mass transfer equation was derived for membrane humidifiers to correlate the overall mass transfer coefficient and membrane area, and this equation could be used in process design and scale up.  相似文献   

6.
《分离科学与技术》2012,47(12):1609-1619
Abstract

Composite hollow fiber membranes were prepared by coating polyethersulfone hollow fibers with silicone rubber. The hollow fiber membranes so produced were found to be water selective when they were used for the separation of feed ethanol/water mixtures by pervaporation. When fructose was added to feed ethanol/water mixtures, a decrease in permeation rate and an increase in water selectivity were observed. The decrease in the permeation rate was possible to assume, but the noticed increase in water selectivity was against our expectation, since the vapor pressure of water decreases while that of ethanol increases when sugars are added to mixtures of ethanol and water. Water selectivity of the membrane was enhanced with an increase in the amount of fructose in the feed.  相似文献   

7.
金翔  范爱民  郑建华 《上海化工》2004,29(10):16-19
传统的丙烯脱水工艺存在能耗高、丙烯浪费大、再生氦器气用量大等缺点。蒸汽渗透技术具有能耗低、过程简单、分离因子高、操作灵活等优点,而且它的渗透通量较低,这使得它特别适用于微量可凝组分的分离。本研究以脱除丙烯中微量水分为目的,以聚乙烯醇、壳聚糖为复合膜活性层,聚砜中空纤维膜为支撑层,制备出多种中空纤维复合膜。考察制膜条件及实验操作条件对膜性能的影响。  相似文献   

8.
《分离科学与技术》2012,47(15):3813-3825
Abstract

Suppression of osmotic distillation of water is important for the commercial scale application of gas membranes. We have equalized the water vapor pressure on either side of the membrane by increasing the temperature of the stream with the lower water vapor pressure. The experimentally determined temperature gradient is many times larger than predicted from water vapor pressure–temperature data. The larger temperature gradient may be explained by considering the heat flux across the membrane. The economic viability of adjusting the temperature of the feed and strip streams to suppresses water vapor transport depends on the additional energy costs involved.  相似文献   

9.
李洪深  李十中 《化工进展》2020,39(5):1620-1631
蒸汽渗透作为一种新型膜分离技术,可有效解决生物燃料乙醇生产中发酵产物浓度低、能源消耗量大、污染环境等诸多瓶颈问题。与渗透蒸发相比,蒸汽渗透技术具有分离性能好、进料清洁、能量损耗低、操作弹性大等优点,在燃料乙醇生产领域具备更广阔的应用前景。本文在比较渗透蒸发和气体分离技术的基础上,简述了蒸汽渗透过程的机理和特点。介绍了优先透水膜和优先透醇膜两类应用于燃料乙醇生产不同阶段的蒸汽渗透膜和这两类膜材料当前的研究进展,重点阐述了有机/无机杂化膜在成膜方法、杂化材料选择等方面的最新成果。回顾了蒸汽渗透在乙醇脱水方面的工业应用成果,指出该技术在发酵原位分离乙醇和替代精馏工艺方面所具有的优势,探讨了与固态发酵技术相结合进行一次相变生产燃料乙醇工艺实现的可能性,并提出未来亟待研究和解决的问题,为蒸汽渗透技术在燃料乙醇生产领域大规模发展提供参考。  相似文献   

10.
Pervaporation membrane technology is commercially successful in the dehydration of organic solvents, and the technology has potential for seawater desalination with high recovery because of its capability to treat highly saline water. But to make the technology advantageous over the other available membrane desalination technologies in terms of productivity flux without additional energy cost, the selective barrier layer is required to be extremely thin, defect‐free, hydrophilic, and selective to water. In this work, we prepared an efficient membrane by reinforcing a highly water‐permeable but continuous barrier layer of poly(vinyl alcohol)–silica (PVA‐SiO2) hybrid material on porous polysulfone hollow fibers. The PVA‐SiO2 in acidified and hydrated ethanol was aged at room temperature for a period to allow solvent evaporation to obtain the solution concentration desired for the reinforcement. The reinforced hollow fiber membrane with optimal PVA‐SiO2 barrier layer thickness exhibited a performance with a flux of 20.6 L m?2 h?1 and 99.9% salt rejection from a saline feed of 2000 ppm NaCl at 333 K. The effects of PVA‐SiO2, temperature, and feed salinity on the pervaporation performance of the membrane were also studied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45718.  相似文献   

11.
High‐temperature vapor permeation has a stringent requirement of membrane stability under harsh feed environments. This work reports the design of Teflon AF2400/Ultem composite hollow fiber (HF) membranes for alcohol dehydration via vapor permeation. Fabrication parameters such as Teflon concentration and coating time were systematically investigated. Interestingly, the fabricated composite HF membranes possess an unusual surface with honeycomb‐like microstructure patterns. Owing to the Teflon protective layer, the newly developed composite HF shows a promising and stable separation performance with a flux of 4265 gm?2 h?1 and a separation factor of 383 for 95% isopropanol dehydration at 125°C. The composite HF also performs well under extreme vapor feed compositions from 87 to 99 wt % isopropanol. In addition, it exhibits impressive separation performance for the dehydration of ethanol and n‐butanol. This work may provide useful insights of designing thermal‐stable and high‐performance composite polymeric membranes for vapor permeation. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1747–1757, 2016  相似文献   

12.
《分离科学与技术》2012,47(3):322-330
Poly(ether–block–amide) (Pebax 2533) membrane was synthesized on a poly(vinylidene fluoride) (PVDF) ultraporous substrate to study the separation of synthetic ethylene glycol/water and ethanol/water mixtures by pervaporation. The membrane was characterized by FTIR spectroscopy, DSC, SEM, and XRD to assess intermolecular interactions, thermal stability, surface morphology, and crystallinity, respectively. Equilibrium sorption studies were carried out in pure liquids and binary alcohol-water mixtures of different compositions to assess polymer-liquid interactions. Pebax 2533 membrane exhibited the requisite potential for dehydration of the alcohols by showing a selectivity of 1254 and water flux of 0.05 kg m?2 h?1 for the ethanol azeotrope, whereas the corresponding selectivity for 95% ethylene glycol feed was 978 with a similar flux. The effect of operating parameters such as feed composition and permeate pressure on membrane performance was evaluated. The membrane exhibited considerable feasibility for scale-up with significant potential for alcohol dehydration.  相似文献   

13.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

14.
A seeding-free synthesis method is developed for preparation of oriented zeolite LTA membranes by using 1,4-phenylene diisocyanate (PDI) as a molecular linker. Before hydrothermal synthesis, –NCO groups are introduced with the functionalization of Al2O3 supports by PDI. A thin, well intergrown zeolite LTA membrane with a thickness of about 4.0 µm can be formed on the PDI-modified Al2O3 supports. The zeolite LTA membrane displays high pervaporation performances for dehydration of alcohols. At 90°C, the separation factor of the zeolite LTA membrane is 4480 for dehydration of 95 wt% ethanol/water mixtures, with a high water flux of 3.4 kg·m?2·h?1.  相似文献   

15.
《分离科学与技术》2012,47(4):523-536
The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally considered to be the benchmark hydrophobic membrane material in pervaporation, water/ethanol molar permselectivity of a pure PDMS membrane was found to be 0.89 for a feed containing 80/20 w/w ethanol/water at 50°C, indicating a slight selectivity for water. Fluorinated groups in PTFPMS improved the water-ethanol permselectivity to 1.85, but decreased the water permeability from 9.7 × 10?12 kmol · m/m2 · s · kPa in PDMS to 5.1 × 10?12 kmol · m/m2 · s · kPa (29,000 and 15,200 Barrer, respectively). These water permeabilities are attractive, particularly since the rubbery materials should not experience the steep declines in water permeability observed with most standard dehydration membranes as water concentration in the feed decreases. However, the water selectivity is lower than desired for most applications. Particles of hydrophilic zeolite 4A were loaded into both PDMS and PTFPMS matrices in an effort to boost water selectivity and further improve water permeability. Water-ethanol permselectivities as high as 11.5 and water permeabilities as high as 23.2 × 10?12 kmol · m/m2 · s · kPa were observed for the PTFPMS/zeolite 4A mixed matrix membranes?6 times higher than for the unfilled PTFPMS membrane.  相似文献   

16.
A modification of the carrier gas method for measuring permeability of a hollow fiber to a vapor is described with particular application to water vapor permeation through asymmetric cellulose triacetate in hollow fiber from. Conventional methods are inadequate because the high flux of permeation vapor combined with its low pressure on the permeate side and the small diameter of the fiber lead to an excessive buildup of pressure in the permeate stream—in some cases so great as to render much of the fiber length ineffective. The method described in this paper involves the permeation from the outside to the inside of the fiber of a binary mixture consisting of the water vapor and a fairly highly permeable carrier (helium). There is a significant pressure drop along the fiber, but a theoretical treatment is presented to take this into account and to permit a determination of the vapor permeability. Experiments at 35°C over a range of water vapor pressures up to 1.7 cm Hg gave a water flux of 9 × 10?3 cc(S.T.P.)/cm2-sec-cm Hg, with an apparent slight decrease with increasing pressure. Over the same range of water vapor pressure the helium flux decreased from 2.3 × 10?4 to 1.85 × 10?4 cc(S.T.P.)/cm2-sec-cm Hg.  相似文献   

17.
针对乙酸酯化法生产乙酸乙酯分离过程复杂、能耗大的缺点,提出了一种带侧线反应精馏-渗透汽化(RD-PV)集成过程。通过反应精馏塔侧线采出和渗透汽化膜组件及时移出水分,促进酯化反应向正反应方向进行,在达到乙酸高转化率的同时使乙酸乙酯产品达到高纯度。研究了反应精馏塔侧线采出位置、采出比、反应段塔板数、精馏段塔板数以及膜组件个数等对年度总成本(TAC)的影响,获得了TAC达到最小的过程参数。与传统双塔精馏分离过程对比,RD-PV集成过程节省能耗26.6%,但膜材料价格对RD-PV集成过程的TAC有较大影响,随着渗透汽化技术的成熟,当膜材料价格低于1913 CNY·m-2时,RD-PV集成过程在经济上占据优势。  相似文献   

18.
The immiscibility induced phase separation (I2PS) process was introduced as a novel method to fabricate hollow fibers with exceptionally high water permeance and reasonably high water/ethanol selectivity in dehydration of ethanol by pervaporation. As a continuation of the previous work, this study discloses the mechanisms to enhance the performance of hollow fibers spun via I2PS by elucidating the material selection at the inner‐layer. Moreover, it revealed the methods to reduce mass‐transport resistance by enhancing surface porosity for both inner and outer surfaces to further improve the permeation flux of the membranes. The continuous performance test demonstrates that the fibers spun from the I2PS possess a stable dehydration performance throughout the monitored period of 300 h. A comparison with pervaporation membranes in the literatures verifies the superiority of the membranes spun via I2PS process with the highest water permeation flux of 9.5 kg/m2 h and the permeate water purity of 95.8 wt % at 80°C. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3006–3018, 2013  相似文献   

19.
设计并搭建了分子筛膜脱水中试装置,对本课题组微波加热技术合成的工业级NaA型分子筛膜进行乙醇/水体系蒸汽渗透的性能研究,得到了NaA型分子筛膜的水渗透通量方程,水透量与原料液含水量、雷诺数之间的关系及变化规律。对精馏与膜分离耦合工艺进行流程模拟,提出了精馏与膜分离的最佳耦合点,并且给出了分子筛膜的价格和寿命对总费用的影响,为NaA型分子筛膜工业应用提供重要参考依据。根据中试结果,在江苏索普集团醋酸加氢制乙醇项目中建设完成了3万吨/年的分子筛膜乙醇脱水装置,是目前国内单套最大的分子筛膜脱水装置。目前,装置已连续运行超过1000h,运行结果良好。  相似文献   

20.
Thomas Buer  Jeff Cumin 《Desalination》2010,250(3):1073-408
Membrane Bioreactor (MBR) technology is widely accepted today for wastewater treatment providing superior effluent quality, opportunities for water reuse, smaller footprint, and better process control. In the following paper, the development and application of hollow fibre submerged membrane modules in Membrane Bioreactors will be discussed. Early MBR systems used tubular cross flow micro-filtration (MF) or ultra-filtration (UF) membrane modules but the huge energy demand for cross flow technology limited it to heavily polluted niche applications. In the late 80’s the development of submerged membrane technology reduced the energy consumption by using aeration to induce a cross flow and withdrawing purified water by slight vacuum allowing the adoption of MBR technology to more conventional applications. Based upon the m2 of membrane area sold/used worldwide, hollow fibre membrane technology is today the most successful submerged MBR technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号